
BUILD ING ELASTIC

AND RESI L I ENT

CLOUD APPLICATIONS

Dominic Betts
Jérémi Bourgault
Julian Dominguez
Ercenk Keresteci
Grigori Melnik
Fernando Simonazzi
Erwin van der Valk

Developer’s Guide to the
Enterprise Library Integration
Pack for Windows Azure™

• • • • • •
• • • • • • • •
• • • • • • •
• • • • •

building elastic and resilient cloud applications

Building Elastic and
Resilient Cloud Applications
Developer’s Guide to the Enterprise Library
Integration Pack for Windows AzureTM

Authors
Dominic Betts
Jérémi Bourgault
Julian Dominguez
Ercenk Keresteci
Grigori Melnik
Fernando Simonazzi
Erwin van der Valk

ISBN: 978-1-62114-001-6

This document is provided “as-is.” Information and views expressed in this
document, including URL and other Internet website references, may change
without notice. You bear the risk of using it. Some examples depicted herein
are provided for illustration only and are fictitious. No real association or
connection is intended or should be inferred.

© 2011 Microsoft. All rights reserved.

Microsoft, Windows, Windows Server, Windows Vista, Windows Azure,
Windows PowerShell, Silverlight, Expression, Expression Blend, MSDN,
IntelliSense, IntelliTrace, Internet Explorer, SQL Azure, SQL Server, Visual
C#, Visual C++, Visual Basic, and Visual Studio are trademarks of the
Microsoft group of companies.

All other trademarks are the property of their respective owners.

Contents

foreword	 ix

preface	 xiii
Who This Book Is For	 xiv
Why This Book Is Pertinent Now	 xiv
How This Book Is Structured	 xv
What You Need to Use the Code	 xv
Who’s Who	 xvi

acknowledgments	 xix
The Team Who Brought You This Guide	 xix
The Enterprise Library Integration Pack
 for Windows Azure Development Team	 xix
Advisors	 xx

Advisory Council	 xx
Community 	 xx

1	 Introduction to Windows Azure	 1
About Windows Azure	 1

Windows Azure Services and Features	 3
Compute Environment	 3
Data Management	 4
Networking Services	 5
Other Services	 7

Developing Windows Azure Applications	 7
Managing, Monitoring, and Debugging
 Windows Azure Applications	 8

Managing SQL Azure Databases	 9
Upgrading Windows Azure Applications	 9

Windows Azure Subscription and Billing Model	 10
Estimating Your Costs	 12

More Information	 12

2	 Introduction to Enterprise Library 		
	 Integration Pack for Windows Azure	 17

What Is Enterprise Library?	 17
What Is the Enterprise Library Integration Pack
 for Windows Azure?	 20
More Information	 21

3	 The Tailspin Scenario	 23
The Tailspin Company	 23

Tailspin’s Strategy	 24
The Surveys Application	 24
Tailspin’s Goals and Concerns	 26

The Surveys Application Architecture	 27
More Information	 29

4	 Autoscaling and Windows Azure	 31
What is Autoscaling?	 31
What is the Autoscaling Application Block?	 32

Instance Autoscaling	 34
Application Throttling	 35
Rules and Actions	 36

Constraint Rules	 36
Reactive Rules	 39

Logging	 42
The Autoscaling Lifecycle	 43

Determine Requirements and Constraints	 44
Specify Rules	 44
Run the Application	 44
Collect and Analyze the Results	 44

When Should You Use the Autoscaling
Application Block?	 45

You Want Your Application to Respond
 Automatically to Changes in Demand	 45
You Want to Manage the Costs Associated
 with Running Your Application	 45
You Have Predictable Times When Your Application
 Requires Additional Resources	 46
When Should You Not Use the
Autoscaling Application Block	 46

Simple Applications	 46
Controlling Costs	 47
Applications That Are Not Scalable	 47

Using the Autoscaling Application Block	 47
Adding the Autoscaling Application
 Block to Your Visual Studio Project	 49

Hosting the Autoscaling Application Block	 50
 Changes to Your Windows Azure
Application	 51
The Service Information	 52
Adding Throttling Behavior
 to Your Application	 54

Using Instance Autoscaling and Throttling Together	 54
The Autoscaling Rules	 55

Implementing Schedule-based Autoscaling
 Without Reactive Rules	 57

Monitoring the Autoscaling
Application Block	 58
Advanced Usage Scenarios	 60

Scale Groups	 60
Using Notifications	 62
Integrating with the Application Lifecycle	 63
Extending the Autoscaling Application Block 	 65
Using the WASABiCmdlets	 66

Sample Configuration Settings	 67
Average Rule Evaluation Period	 69
Long Rule Evaluation Period	 70
Configuring the Stabilizer	 70

Using the Planning Tool	 72
How the Autoscaling Application Block Works	 73

The Metronome	 74
The Data Collectors	 74
The Service Information Store	 75
The Data Points Store	 75
The Rule Evaluator	 75
The Rules Store	 75
The Logger	 76
The Scaler	 76
The Tracker	 76

More Information	 77

5	 Making Tailspin Surveys More Elastic	 83
The Premise	 83
Goals and Requirements	 84
Overview of the Autoscaling Solution	 86

Using the Autoscaling Application Block
 in Tailspin Surveys	 86

Features of the Autoscaling Application Block 	 86
Hosting the Autoscaling Application Block
 in Tailspin Surveys	 87
Scale Groups in Tailspin Surveys	 88

Autoscaling Rules in Tailspin Surveys	 88
Collecting Autoscaling History Data
in Tailspin Surveys	 91
An Autoscaling Configuration UI	 92
Notifying Operators by SMS When
a Scaling Operation Takes Place	 92

Inside the Implementation	 92
Enabling the Autoscaling Application Block
 to Read from the .cscfg File	 93
Tailspin’s Service Information Definition	 93
Tailspin’s Autoscaling Rules	 95

Tailspin Surveys Constraint Rules	 95
Tailspin Surveys Reactive Scaling Rules	 96
Tailspin Surveys Reactive Throttling Rules	 99
Tailspin Surveys Operands	 101

Collecting Performance Counter Data
 from Tailspin Surveys	 102
Implementing Throttling Behavior	 105
Editing and Saving Rules	 107

Discovering the Location of the Rules Store	 107
Reading and Writing to the Rules Store	 107
Creating Valid Autoscaling Rules	 109
Validating Target Names in the Rule Definitions	 110

Editing and Saving the Service
Information	 111
Visualizing the Autoscaling Actions	 111
Implementing a Custom Action	 115

Integrating a Custom Action with the
 Autoscaling Application Block	 115
Integrating a Custom Action with the
Tailspin Surveys Rule Editor	 118

Implementing Custom Operands	 119
Integrating a Custom Operand with the
 Autoscaling Application Block	 119
Integrating a Custom Operand with the
 Tailspin Surveys Rule Editor	 124

Configuring Logging in Tailspin Surveys	 124
Setup and Physical Deployment	 126

Certificates and Tailspin Surveys

Deployment	 126
Deploying a Service Certificate to Enable SSL	 126
Deploying the Management Certificate
 to Enable Scaling Operations	 127

Deploying Tailspin Surveys in Multiple
 Geographic Locations	 128

Data Transfer Costs	 130
Role Instances	 131
Configuration Differences	 131
Application Differences	 131

More Information	 132

6	 Transient Fault Handling	 133
What Are Transient Faults?	 133
What Is the Transient Fault Handling
 Application Block?	 134

Historical Note	 135
Using the Transient Fault Handling
Application Block	 136

Adding the Transient Fault Handling Application
 Block to Your Visual Studio Project	 136
Instantiating the Transient Fault
 Handling Application Block Objects	 137
Defining a Retry Strategy	 137
Defining a Retry Policy	 138
Executing an Operation
 with a Retry Policy	 139

When Should You Use the Transient
Fault Handling Application Block?	 140

You are Using a Windows Azure Service	 140
You Are Using a Custom Service	 140

More Information	 141

7	 Making Tailspin Surveys More Resilient	 143
The Premise	 143
Goals and Requirements	 144
Overview of the Transient Fault Handling
 Application Block Solution	 144
Inside the Implementation	 145
Setup and Physical Deployment	 148
More Information	 148

appendices
a	 Sample Configurations For Deploying
	 Tailspin Surveys To Multiple Data Centers	 149

Option 1	 149
Service Model	 149
Rules	 151

Option 2	 154
Service Model	 155
Rules	 156

b	 Tailspin Surveys Installation Guide	 159
Introduction	 159

Prerequisites	 160
Install Source Code and Dependencies	 160

Prepare Your Windows Azure Subscription
 for Deployment	 162

Generate the Windows Azure Management
 Certificate and Export as .pfx File	 162
Generate the SSL Certificate	 165
Create the Required Hosted Services	 167
Upload Certificates as Hosted Services’
 Service Certificates	 169
Create the Storage Account	 170

Building the Solution	 172
Install NuGet Packages	 172
Modify the Certificates in the Visual Studio
 Cloud Projects	 173
Prepare the Settings in the Cloud Projects	 175
Build the Solution	 177

Deploy to Windows Azure	 178
Deploying Tailspin to the Staging Slot	 178
Testing If Tailspin Surveys Works	 180

Public Website	 180
Tenant Website	 180
Management Website	 180

Configuring Tailspin Autoscaling Functionality	 181
Configuring the Service Information Store	 181
Uploading the Sample Rules	 182

Running Tailspin Surveys Locally in Debug Mode	 182
Running the Management Application
 in Simulated Mode	 183
Known Issues	 184
More Information	 185

c	 Glossary	 187

index	 191

 xi

Foreword

Energy use in the IT sector is growing faster than in any other industry
as society becomes ever more dependent on the computational and
storage capabilities provided by data centers. Unfortunately, a combi-
nation of inefficient equipment, outdated operating practices, and
lack of incentives means that much of the energy used in traditional
data centers is wasted.

Most IT energy efficiency efforts have focused on physical infra-
structure—deploying more energy-efficient computer hardware and
cooling systems, using operating system power management features,
and reducing the number of servers in data centers through hardware
virtualization.

But a significant amount of this wasted energy stems from how
applications are designed and operated. Most applications are provi-
sioned with far more IT resources than they need, as a buffer to ensure
acceptable performance and to protect against hardware failure. Most
often, the actual needs of the application are simply never measured,
analyzed, or reviewed.

Once the application is deployed with more resources than it
typically needs, there is very little incentive for the application devel-
opers to instrument their application to make capacity planning easi-
er. And when users start complaining that the application is perform-
ing slowly, it’s often easier (and cheaper) to simply assign more
resources to the application. Very rarely are these resources ever re-
moved, even after demand for the application subsides.

Cloud computing has the potential to break this dynamic of
over-provisioning applications. Because cloud platforms like Windows
Azure charge for resource use in small increments (compute-hours)
on a pay-as-you-go basis, developers can now have a direct and con-
trollable impact on IT costs and associated resource use.

Applications that are designed to dynamically grow and shrink
their resource use in response to actual and anticipated demand are
not only less expensive to operate, but are significantly more efficient

xii

with their use of IT resources than traditional applications. Develop-
ers can also reduce hosting costs by scheduling background tasks to
run during less busy periods when the minimum amount of resources
are assigned to the application.

While the cloud provides great opportunities for saving money on
hosting costs, developing a cloud application that relies on other
cloud services is not without its challenges. One particular problem
that developers have to deal with is “transient faults.” Although infre-
quent, applications have to be tolerant of intermittent connectivity
and responsiveness problems in order to be considered reliable and
provide a good user experience.

Until now, developers on Windows Azure had to develop these
capabilities on their own. With the release of the Enterprise Library
Integration Pack for Windows Azure, developers can now easily build
robust and resource efficient applications that can be intelligently
scaled, and throttled. In addition, these applications can handle tran-
sient faults.

The first major component contained within the Integration Pack
is the Autoscaling Application Block, otherwise known as “WASABi.”
This application block helps developers improve responsiveness and
control Windows Azure costs by automatically scaling the number of
web and worker roles in Windows Azure through dynamic provision-
ing and decommissioning of role instances across multiple hosted
services. WASABi also provides mechanisms to help control resource
use without scaling role instances through application throttling.
Developers can use this application block to intelligently schedule or
defer background processing to keep the number of role instances
within certain boundaries and take advantage of idle periods.

One of the major advantages of WASABi is its extensibility, which
makes your solutions much more flexible. Staying true to the design
principles of other application blocks, WASABi provides a mechanism
for plugging in your own custom metrics and calling custom actions.
With these, you can design a rule set that takes into account your
business scenarios and not just standard performance counters avail-
able through the Windows Azure Diagnostics.

The optimizing stabilizer will ensure that you do not end up scal-
ing too quickly. It can also make sure scale actions correspond to the
most optimal compute hour pricing charges. For applications that
expect significant usage beyond more than a few instances, this ap-
plication block will help developers save money on hosting costs
while improving the “green credentials” of their application. It will also
help your application meet target SLAs.

The other major component is the Transient Fault Handling Ap-
plication Block (also known as “Topaz”) that helps developers make
their applications more robust by providing the logic for detecting

 xiii

and handling transient fault conditions for a number of common
cloud-based services.

More than ever before, developers have an important role to play
in controlling IT costs and improving IT energy efficiency, without
sacrificing reliability. The Enterprise Library Integration Pack for Win-
dows Azure can assist them in rapidly building Windows Azure-based
applications that are reliable, resource efficient, and cost effective.

The Developer’s Guide you are holding in your hands is written by
the engineering team who designed and produced this integration
pack. It is full of useful guidance and tips to help you learn quickly.
Importantly, the coverage includes not only conceptual topics, but the
concrete steps taken to make the accompanying reference implemen-
tation (Tailspin Surveys) more elastic, robust, and resilient.

Moreover, the guidance from the Microsoft patterns & practices
team is not only encapsulated in the Developer’s Guide and the refer-
ence implementation. Since the pack ships its source code and all its
unit tests, a lot can be learned by examining those artifacts.

I highly recommend both the Enterprise Library Integration Pack
for Windows Azure and this Developer’s Guide to architects, soft-
ware developers, administrators, and product owners who design new
or migrate existing applications to Windows Azure. The practical ad-
vice contained in this book will help make your applications highly
scalable and robust.

Mark Aggar, Senior Director
Environmental Sustainability
Microsoft Corporation

xv

Preface

The Windows Azure™ technology platform offers exciting new op-
portunities for companies and developers to build large and complex
applications to run in the cloud. Windows Azure enables you to take
advantage of a pay-as-you-go billing model for your application infra-
structure and on-demand computing resources.

By combining the existing Microsoft® Enterprise Library applica-
tion blocks that help you design applications that are robust, configu-
rable, and easy to manage, with new blocks designed specifically for
the cloud, you can create highly scalable, robust applications that can
take full advantage of Windows Azure.

This book describes a scenario based on a fictitious company
named Tailspin that has decided to enhance its existing Windows
Azure hosted application by using the new Autoscaling Application
Block and Transient Fault Handling Block. Its Windows Azure-based
application, named Surveys, is described in detail in a previous book
in this series, “Developing Applications for the Cloud” at http://msdn.
microsoft.com/en-us/library/ff966499.aspx.

This guide accompanies a reference implementation, which we
encourage you to study and play with to better understand how the
new application blocks operate.

In addition to describing the Windows Azure application and how
it uses the Enterprise Library blocks, this book provides a description
of the key features of the blocks and general guidance on how you
can use them in your own applications.

The result is that, after reading this book, you will be familiar
with how to incorporate the Autoscaling Application Block and the
Transient Fault Handling Application Block in your Windows Azure
applications.

http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx

xvi

Who This Book Is For
This book demonstrates how you can use the Enterprise Library Inte-
gration Pack for Windows Azure in an existing Windows Azure ap-
plication to enhance the maintainability, manageability, scalability,
stability, and extensibility of the application. The book is intended for
any architect, developer, or information technology (IT) professional
who designs, builds, or operates applications and services that are ap-
propriate for the cloud and who wants to learn how to realize the
benefits of using Enterprise Library in a cloud-based application. You
should be familiar with Windows Azure, the Microsoft .NET Frame-
work, Microsoft Visual Studio® development system, ASP.NET, and
Microsoft Visual C#® to derive full benefit from reading this guide.
The next two chapters offer overviews of Windows Azure and the
Enterprise Library Integration Pack for Windows Azure to help you
get started.

Why This Book Is Pertinent Now
In general, the cloud has become a viable option for making your ap-
plications accessible to a broad set of customers. You may have already
built and deployed applications to Windows Azure using the tools
available for Visual Studio and the Windows Azure SDK for .NET. Just
as Enterprise Library has helped you to address common, crosscutting
concerns, such as logging and exception management, in your on-
premises applications, the Integration Pack and its associated guid-
ance will help you address the crosscutting concerns common to
many cloud applications. Some of these crosscutting concerns will be
the same as those in your on-premises applications, such as exception
management and caching; some will be different, such as auto-scaling
to meet elastic demand. This book shows you how you can address
these concerns in the context of a common scenario: enhancing an
existing Windows Azure application.

 xviipreface

How This Book Is Structured

What You Need to Use the Code
In order to run the Tailspin Surveys application, you will need the
following:
•	 A development machine running Microsoft Visual Studio® 2010

development system SP1.
•	 All required Microsoft Windows® updates.
•	 NuGet Package Manager (for more information, see http://

nuget.codeplex.com/).
•	 A Windows Azure subscription with room for two hosted

services (if you want to run the Tailspin Surveys application,
the Autoscaler Host, and the Management Web application
in Windows Azure).

http://nuget.codeplex.com/
http://nuget.codeplex.com/

xviii

•	 A Windows Azure storage account.
•	 The Dependency Checker, which will verify that you have the

prerequisites listed below installed. If not, it will help you install
them.

•	 Visual Studio 2010
•	 MVC 3 Framework
•	 Windows Azure SDK for .NET and Windows Azure Tools for

Microsoft Visual Studio – November 2011 Release
•	 Windows Identity Foundation Runtime
•	 Optional: Internet Information Services 7 (IIS) – This is required

if you want to run the management site in simulated mode or
want to deploy the autoscaler role locally.

Who’s Who
As mentioned earlier, this book employs scenarios that demonstrate
how to use the Enterprise Library Integration Pack for Windows
Azure in a reference implementation. A panel of experts comments
on the development efforts. The panel includes a cloud specialist, a
business manager, a software architect, a software developer who is
knowledgeable about Enterprise Library, a software developer who is
new to Enterprise Library, and an IT professional. The scenarios can
be considered from each of these points of view. The following table
lists the experts for these scenarios.

Bharath is a cloud specialist. He checks that a cloud-based
solution will work for a company and provide tangible benefits.
He is a cautious person, for good reasons.

Developing a single application to the cloud is easy.
Realizing the benefits that a cloud-based solution
can offer is not always so straightforward.

Jana is a software architect. She plans the overall structure of an application.
Her perspective is both practical and strategic. In other words, she considers
not only what technical approaches are needed today, but also what direction
a company needs to consider for the future. Jana has worked on many
projects that have used Enterprise Library.

It’s not easy to balance the needs of the company,
the users, the IT organization, the developers,
and the technical platforms we rely on.

 xix

Markus is a software developer who is new to Enterprise Library. He is
analytical, detail-oriented, and methodical. He’s focused on the task at hand,
which is building a great cloud-based application. He knows that he’s the
person who’s ultimately responsible for the code.

I don’t care what platform you want to use for
the application, I’ll make it work.

Ed is an experienced software developer and Enterprise Library expert.
As a true professional, he is well aware of the common crosscutting concerns
that developers face when building line-of-business (LOB) applications for
the enterprise. In the past, he has built his own libraries to satisfy these
concerns, but in the last several years he has used Enterprise Library for
most of these
applications.		 Our applications use Enterprise Library for crosscutting
			 concerns. This provides a level of uniformity across all our
			 systems that make them easier to support and maintain.
			 We have invested heavily in our on premises applications
			 and we must be able to reuse this investment in the cloud.

Poe is an IT professional who’s an expert in deploying and running applications
in the cloud. Poe has a keen interest in practical solutions; after all,
he’s the one who gets paged at 3:00 AM when there’s a problem.

Migrating applications in the cloud involves different
challenges from managing on-premises applications.
I want to make sure our cloud apps are as reliable and
secure as our on-premise apps.

Beth is a business manager. She helps companies to plan how their business
will develop. She understands the market that the company operates in,
the resources that the company has available, and the goals of the company.
She has both a strategic view, and an interest in the day-to-day operations
of the company.

Organizations face many conflicting demands on their
resources. I want to make sure that our company balances
those demands and adopts a business plan that will make
us successful in the medium and long term.

preface

If you have a particular area of interest, look for notes provided
by the specialists whose interests align with yours.

 xxi

Acknowledgments

The Team Who Brought You This Guide
Authors 	 Dominic Betts, Jérémi Bourgault, Julian Dominguez, Ercenk

Keresteci, Grigori Melnik, Fernando Simonazzi, and Erwin van
der Valk

Technical Reviewers 	 Neil Mackenzie, Valery Mizonov, Eugenio Pace, Paweł Wilkosz,
and Michael Wood

Book Designer	 John Hubbard
Graphic Artist 	 Katie Niemer
Editors 	 RoAnn Corbisier, Nelly Delgado, and Nancy Michell

The Enterprise Library Integration Pack
for Windows Azure Development Team

Product/Program 	 Grigori Melnik (Microsoft Corporation)
Management 	
Architecture/	 Julian Dominguez (Microsoft Corporation), Fernando Simonazzi
Development 	 (Clarius Consulting), Jérémi Bourgault (nVentive Inc.), and Ercenk

Keresteci (Full Scale 180 Inc)
Testing 	 Mani Krishnaswami and Carlos Farre (Microsoft Corporation),

Neeraj Jain, Murugesh Muthuvilavan, Karthick Natarajan,
Thamilarasi Nataraj and Rathi Velusamy (Infosys Technologies Ltd.)

User Experience/ 	 Dominic Betts, Nancy Michell (Content Master Ltd.), Rick Carr
Documentation 	 (DCB Software Testing, Inc.), Nelly Delgado (Microsoft

Corporation) and Erwin van der Valk (Erwin van der Valk)
Release Management 	 Richard Burte (ChannelCatalyst.com, Inc.), Grigori Melnik

(Microsoft Corporation), and Jérémi Bourgault (nVentive Inc.)
Administrative Support 	 Kerstin Scott (Microsoft Corporation)

xxii

Advisors
Many people contributed to this release. We are grateful to all of them!
Advisory Council	 Nikolai Blackie (Adaptiv), Ivan Bodyagin (ABBYY), Federico

Boerr (Southworks), Leandro Boffi (Tellago), Michael Collier
(Independent), Hans De Graaf (New Day at Work), Jason
De Oliveira (Capgemini Sogeti), Dave Fellows (Green
Button), Ştefan Filip (HPC Consulting), Sam Fold
(Arkadium), Nuno Filipe Godinho (Independent), Neil
Mackenzie (Independent), Daniel Piessens (Zywave), Marc
Remmers (42windmills), Keith Stobie (Independent),
François Tanguay (nVentive), Mihai Tataran (HPC
Consulting), Stas Tkachenko (Arkadium), Trent Swenson
(Full Scale 180), Gabriel Szletchman (3mellons), Philippe
Vialatte (Independent), Guido Vilariño (3mellons/Disney),
Oleg Volkov (New Day At Work), Paweł Wilkosz (Motorola
Solution Systems), Michael Wood (Cumulux Inc.), and our
Microsoft colleagues: Mark Aggar, David Aiken, Kashif Alam,
Jaime Alva Bravo, Cihan Biyikoglu, Jim Davis, John Dawson,
Scott Densmore, Lenny Fenster, Danny Garber, Rick Hines,
Tom Hollander, Dmitri Martynov, Steve Marx, Tony Meleg,
Suren Machiraju, Ade Miller, Valery Mizonov, Walter Myers,
Masashi Narumoto, Bhushan Nene, Eugenio Pace, Curt
Peterson, James Podgorski, Srilatha Rayasam, Paolo Salvatori,
Marc Schweigert, Mark Simms, Eric Slippern, Vijay Sen, and
Tim Wieman.

The contributions of Valery Mizonov and the whole AppFabric Customer Advisory
Team (CAT) deserve a special mention. The Transient Fault
Handling Application Block is based on the detection and
retry strategies originally developed by the AppFabric CAT
team. The enhanced Transient Fault Handling Application
Block is a collaboration between the patterns & practices
and the AppFabric CAT teams.

We’d also like to highlight our exceptional collaboration with Microsoft Consulting
Services (Lenny Fenster, Danny Garber, Rick Hines, Walter
Myers, and Marc Schweigert) whose regular feedback
helped us stay grounded in the real world scenarios. Thank
you for not letting us overlook many important ones.

Community 	
Many thanks to Rahul Rai, Sudhakar Reddy D V, Maarten Baaliauw, Zoiner Tejada and all

who voted on the backlog, beta tested our early code drops,
and provided meaningful feedback. Also, we thank the
attendees of the patterns & practices symposia, TechReady,
and TechEd conferences who provided informal feedback.

 1

1

This chapter provides a brief description of the Windows Azure™
technology platform, the services it provides, and the opportunities it
offers for on-demand, cloud-based computing where the cloud is a set
of interconnected computing resources located in one or more data
centers. The chapter also provides links to help you find more infor-
mation about the features of Windows Azure, the techniques and
technologies used in this series of guides, and the sample code that
accompanies them.

The primary purpose of this developer guide is to show how to
use the Enterprise Library Integration Pack for Windows Azure with
your Windows Azure applications. The accompanying reference im-
plementation (sample demo), and the associated hands-on labs utilize
many of the features and services available in Windows Azure, so it is
useful to have an understanding of Windows Azure itself before you
begin using the Enterprise Library Integration Pack for Windows
Azure. If you are already familiar with Windows Azure, you can skip
this chapter and move on to the chapters that describe the Enterprise
Library Integration Pack for Windows Azure and the reference imple-
mentation, called the Tailspin Surveys application.

About Windows Azure
Organizations can use the cloud to deploy and run applications and
to store data. On-premises applications can use cloud-based resourc-
es as well. For example, an application located on an on-premises
server, a rich client that runs on a desktop computer, or one that runs
on a mobile device can use storage that is located on the cloud.

For more information about hybrid solutions, see the integration
guide at http://wag.codeplex.com/.

Windows Azure abstracts hardware resources through virtualiza-
tion. Each application that is deployed to Windows Azure runs on one
or more virtual machines (VMs). These deployed applications behave

Introduction to
Windows Azure

Windows Azure is a
fast-moving platform,
so for the very latest
information about
any of the features
described in this
chapter, you should
follow the provided
links.

http://wag.codeplex.com/

2 chapter one

as though they were on a dedicated computer, although they might
share physical resources such as disk space, network I/O, or CPU cores
with other VMs on the same physical host. Two key benefits of an
abstraction layer above the physical hardware are portability and scal-
ability. Virtualizing a service allows it to be moved to any number of
physical hosts in the data center. By combining virtualization tech-
nologies, commodity hardware, multi-tenancy, and aggregation of
demand, Microsoft and our customers can achieve economies of
scale. Such economies generate higher data center utilization (that is,
more useful work-per-dollar hardware cost) and, subsequently, savings
that are passed along to you.

Virtualization also allows you to have both vertical scalability and
horizontal scalability. Vertical scalability means that, as demand in-
creases, you can increase the number of resources, such as CPU cores
or memory, on a specific VM. Horizontal scalability means that you
can add more instances of VMs that are copies of existing services. All
these instances are load balanced at the network level so that incom-
ing requests are distributed among them.

At the time of this writing, Windows Azure encompasses Win-
dows Azure and SQL Azure.

Windows Azure provides a Microsoft® Windows Server®-based
computing environment for applications and persistent storage for
both structured and unstructured data, as well as asynchronous mes-
saging. Windows Azure also provides a range of services that helps
you connect users and on-premises applications to cloud-hosted ap-
plications, manage authentication, use inter-service messaging, and
implement data management and related features such as caching.

Windows Azure also includes a range of management services
that allows you to control all these resources, either through a web-
based user interface (a web portal) or programmatically. In most cases
there is a REST-based API that can be used to define how your ser-
vices will work. Most management tasks that can be performed
through the web portal can also be performed using the API.

SQL Azure is essentially SQL Server® provided as a service in the
cloud.

Finally, there is a comprehensive set of tools and software devel-
opment kits (SDKs) that allow you to develop, test, and deploy your
applications. For example, you can develop and test your applications
in a simulated local environment, provided by the Compute Emulator
and the Storage Emulator. Most tools are also integrated into develop-
ment environments such as Microsoft Visual Studio® development
system. In addition, there are third-party management tools available.

Windows Azure can
help you achieve
portability and
scalability for your
applications, and
reduce your running
costs and total cost
of ownership (TCO).

 3introduction to windows azure

Windows Azure Services and Features
The range of services and features available on Windows Azure and
SQL Azure target specific requirements for your applications. When
you subscribe to Windows Azure, you can choose which of the fea-
tures you require, and you pay only for the features you use. You can
add and remove features from your subscription whenever you wish.
The billing mechanism for each service depends on the type of
features the service provides. For more information on the billing
model, see “Windows Azure Subscription and Billing Model,” later in this
chapter.

The services and features available change as Windows Azure
continues to evolve. The following four sections of this chapter
briefly describe the main services and features available at the time of
this writing, subdivided into the categories of Compute Environment,
Data Management, Networking Services, and Other Services.

For more information about all of the Windows Azure services
and features, see “Windows Azure Features” on the Windows Azure
Portal. For specific development and usage guidance on each feature
or service, see the resources referenced in the following sections.

To use any of these features and services you must have a
subscription to Windows Azure. A valid Windows Live® ID
is required when signing up for a Windows Azure account.
For more information, see “Windows Azure Offers.”

Compute Environment
The Windows Azure compute environment consists of a platform for
applications and services hosted within one or more roles. The types
of roles you can implement in Windows Azure are:
•	 Windows Azure Compute (Web and Worker Roles). A

Windows Azure application consists of one or more hosted
roles running within the Azure data centers. Typically there will
be at least one web role that is exposed for access by users of
the application. A web role is supported by Internet Information
Service (IIS) 7.0 and ASP.NET. The application may contain
additional roles, including worker roles, that are typically used to
perform background processing and support tasks for web roles.
For more detailed information, see “Overview of Creating a
Hosted Service for Windows Azure” and “Building an Application
that Runs in a Hosted Service.”

•	 Virtual Machine (VM role). This role allows you to host your
own custom instance of the Windows Server 2008 R2 Enter-
prise or Windows Server 2008 R2 Standard operating system

Windows Azure
includes a range of
services that can
simplify develop-
ment, increase
reliability, and make
it easier to manage
your cloud-hosted
applications.

http://www.microsoft.com/windowsazure/features/
http://www.microsoft.com/windowsazure/offers/
http://go.microsoft.com/fwlink/?LinkID=234572
http://go.microsoft.com/fwlink/?LinkID=234572
http://go.microsoft.com/fwlink/?LinkID=234587
http://go.microsoft.com/fwlink/?LinkID=234587

4 chapter one

within a Windows Azure data center. For more detailed infor-
mation see “Creating Applications by Using a VM Role in Windows
Azure.”
The Tailspin Surveys application uses both web and worker roles.

For additional information and guidance about the use of web and
worker roles see the associated guides “Moving Applications to the
Cloud” and “Developing Applications for the Cloud” which are available
at Cloud Development on MSDN. Each of these guides also includes a
set of hands-on labs.

Data Management
Windows Azure, SQL Azure, and the associated services provide op-
portunities for storing and managing data in a range of ways. The
following data management services and features are available:
•	 Windows Azure Storage. This provides four core services for

persistent and durable data storage in the cloud. The services
support a REST interface that can be accessed from within
Windows Azure-hosted or on-premises (remote) applications.
For information about the REST API, see “Windows Azure
Storage Services REST API Reference.” The four storage services
are listed below.

•	 The Windows Azure Table Service provides a table-structured
storage mechanism and supports queries for managing the data.
The Azure Table Service is a NoSQL offering that provides
schema-less storage. It is primarily aimed at scenarios where
large volumes of data must be stored, while being easy to access
and update. For more detailed information see “Table Service
Concepts” and “Table Service REST API.”

•	 The Binary Large Object (BLOB) Service provides a series of
containers aimed at storing text or binary data. It provides both
Block BLOB containers for streaming data, and Page BLOB
containers for random read/write operations. For more detailed
information see “Understanding Block Blobs and Page Blobs” and
“Blob Service REST API.”

•	 The Queue Service provides a mechanism for reliable, persis-
tent messaging between role instances, such as between a web
role and a worker role. For more detailed information see
“Queue Service Concepts” and “Queue Service REST API.”

•	 Windows Azure Drives provide a mechanism for applications
to mount a single volume NTFS VHD as a Page BLOB, and
upload and download VHDs via the BLOB. For more detailed
information see “Windows Azure Drive.”

http://go.microsoft.com/fwlink/?LinkID=234590
http://go.microsoft.com/fwlink/?LinkID=234590
http://go.microsoft.com/fwlink/?LinkID=234613
http://msdn.microsoft.com/en-us/library/dd179355.aspx
http://msdn.microsoft.com/en-us/library/dd179355.aspx
http://msdn.microsoft.com/en-us/library/dd179463.aspx
http://msdn.microsoft.com/en-us/library/dd179463.aspx
http://msdn.microsoft.com/en-us/library/dd179423.aspx
http://msdn.microsoft.com/en-us/library/ee691964.aspx
http://msdn.microsoft.com/en-us/library/dd135733.aspx
http://msdn.microsoft.com/en-us/library/dd179353.aspx
http://msdn.microsoft.com/en-us/library/dd179363.aspx
http://go.microsoft.com/?linkid=9710117

 5introduction to windows azure

•	 SQL Azure Database. This is a highly available and scalable
cloud database service built on SQL Server technologies, that
supports the familiar T-SQL-based relational database model. It
can be used with applications hosted in Windows Azure, and
with other applications running on-premises or hosted else-
where. For more detailed information see “SQL Azure Database.”

•	 Data Synchronization. SQL Azure Data Sync is a cloud-based
data synchronization service built on Microsoft Sync Frame-
work technologies. It provides bi-directional data synchroniza-
tion and data management capabilities, allowing data to be easily
shared between multiple SQL Azure databases and between
on-premises and SQL Azure databases. For more detailed
information see “Microsoft Sync Framework Developer Center.”

•	 Caching. This service provides a distributed, in-memory, low
latency and high throughput application cache service that
requires no installation or management, and dynamically in-
creases and decreases the cache size as required. It can be used
to cache application data, ASP.NET session state information,
and for ASP.NET, page output caching. For more detailed
information see “Windows Azure Caching Service.”
The Tailspin Surveys application uses both Windows Azure stor-

age and SQL Azure. For additional information and guidance about
the use of Windows Azure storage and SQL Azure see the associated
guides “Moving Applications to the Cloud” and “Developing Applications
for the Cloud” which are available at Cloud Development on MSDN.
Each of these guides also includes a set of hands-on labs.

Networking Services
Windows Azure provides several networking services that you can
take advantage of to maximize performance, implement authentica-
tion, and improve manageability of your hosted applications. These
services include the following:
•	 Content Delivery Network (CDN). The CDN allows you to

cache publicly available static data for applications at strategic
locations that are closer (in network delivery terms) to end
users. The CDN uses a number of data centers at many locations
around the world, which store the data in BLOB storage that
has anonymous access. These do not need to be locations where
the application is actually running. For more detailed informa-
tion see “Delivering High-Bandwidth Content with the Windows
Azure CDN.”

•	 Virtual Network Connect. This service allows you to configure
roles of an application running in Windows Azure and comput-
ers on your on-premises network so that they appear to be on

http://msdn.microsoft.com/en-us/library/ee336279.aspx
http://msdn.microsoft.com/en-us/sync
http://go.microsoft.com/fwlink/?LinkID=234613
http://go.microsoft.com/fwlink/?LinkID=234592
http://go.microsoft.com/fwlink/?LinkID=234592

6 chapter one

the same network. It uses a software agent running on the
on-premises computer to establish an IPsec-protected connec-
tion to the Windows Azure roles in the cloud, and provides the
capability to administer, manage, monitor, and debug the roles
directly. For more detailed information see “Connecting Local
Computers to Windows Azure Roles.”

•	 Virtual Network Traffic Manager. This is a service that allows
you to set up request redirection and load balancing based on
three different techniques. Typically you will use Traffic Man-
ager to maximize performance by using the Performance
technique to redirect requests to the instance of your applica-
tion in the data center closest to the user. Alternative load
balancing methods available are Failover and Round Robin. For
more detailed information see “Windows Azure Traffic Manager.”

•	 Access Control (ACS). This is a standards-based service for
identity and access control that makes use of a range of identity
providers (IdPs) that can authenticate users. ACS acts as a
Security Token Service (STS), or token issuer, and makes it easier
to take advantage of federation authentication techniques
where user identity is validated in a realm or domain other than
that in which the application resides. An example is controlling
user access based on an identity verified by an identity provider
such as Windows Live® ID or Google. For more detailed
information see “Access Control Service 2.0” and “A Guide to
Claims-Based Identity and Access Control (2nd Edition).”

•	 Service Bus. This provides a secure messaging and data flow
capability for distributed and hybrid applications, such as
communication between Windows Azure hosted applications
and on-premises applications and services, without requiring
complex firewall and security infrastructures. It can use a range
of communication and messaging protocols and patterns to
provide delivery assurance and reliable messaging, can scale to
accommodate varying loads, and can be integrated with on-
premises BizTalk Server artifacts. For more detailed information
see “Service Bus.”
For additional information and guidance about the use of Win-

dows Azure storage and SQL Azure see the associated guides “Moving
Applications to the Cloud” and “Developing Applications for the Cloud”
which are available at Cloud Development on MSDN. Each of these
guides also includes a set of hands-on labs.

Detailed guidance on using ACS can be found in the associated
document, “A Guide to Claims-Based Identity and Access Control (2nd
Edition)” and in the hands-on labs for that guide.

http://go.microsoft.com/fwlink/?LinkID=234593
http://go.microsoft.com/fwlink/?LinkID=234593
http://go.microsoft.com/fwlink/?LinkID=234594
http://go.microsoft.com/fwlink/?LinkID=234595
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://go.microsoft.com/fwlink/?LinkID=234596
http://go.microsoft.com/fwlink/?LinkID=234613
http://msdn.microsoft.com/en-us/library/ff423674.aspx

 7introduction to windows azure

Other Services
Windows Azure provides the following additional services:
•	 Business Intelligence Reporting. This service allows you to

develop and deploy to the cloud business operational reports
generated from data stored in a SQL Azure database. It is built
upon the same technologies as SQL Server Reporting Services,
and lets you use familiar tools to generate reports. Reports can
be easily accessed through the Windows Azure Management
Portal, through a web browser, or directly from within your
Windows Azure and on-premises applications. For more de-
tailed information see “SQL Azure Reporting.”

•	 Marketplace. This is an online facility where developers can
share, find, buy, and sell building block components, training,
service templates, premium data sets, and finished services and
applications needed to build Windows Azure applications. For
more detailed information see “Windows Azure Marketplace” on
MSDN and “Windows Azure Marketplace” (AppMarket).

Developing Windows Azure Applications
Typically, on Microsoft® Windows®, you will use Visual Studio 2010
with the Windows Azure Tools for Microsoft Visual Studio. The Win-
dows Azure Tools provide everything you need to create Windows
Azure applications, including local compute and storage emulators
that run on the development computer. This means that you can
write, test, and debug applications before deploying them to the
cloud. The tools also include features to help you deploy applications
to Windows Azure and manage them after deployment.

You can download the Windows Azure Tools for Microsoft Vi-
sual Studio, and development tools for other platforms and languages
such as iOS, Eclipse, Java, Ruby, and PHP from “Windows Azure Tools.”

For a useful selection of videos, QuickStart examples, and hands-
on labs that cover a range of topics to help you get started building
Windows Azure applications, see “Learn Windows Azure and SQL
Azure” and “Design. Code. Scale.”

The MSDN “Developing Applications for Windows Azure” topic
includes specific examples and guidance for creating hosted services,
using the Windows Azure Tools for Microsoft Visual Studio to pack-
age and deploy applications, and a useful QuickStart example.

The Windows Azure Training Kit contains hands-on labs to get you
started quickly.

To understand the execution lifecycle and how a Windows Azure
role operates, see “Real World: Startup Lifecycle of a Windows Azure
Role.”

You can build and
test Windows Azure
applications using the
compute and storage
emulators on your
development
computer.

http://go.microsoft.com/fwlink/?LinkID=234597
http://go.microsoft.com/fwlink/?LinkID=234598
http://go.microsoft.com/fwlink/?LinkID=234599
http://www.microsoft.com/windowsazure/tools/
http://www.microsoft.com/windowsazure/tutorials/
http://www.microsoft.com/windowsazure/tutorials/
http://www.microsoft.com/windowsazure/getstarted/
http://go.microsoft.com/fwlink/?LinkID=234600
http://go.microsoft.com/fwlink/?LinkID=234601
http://go.microsoft.com/fwlink/?LinkID=234602
http://go.microsoft.com/fwlink/?LinkID=234602

8 chapter one

For a list of useful resources for developing and deploying data-
bases in SQL Azure, see “Development (SQL Azure Database).”

For a list of tools that can help with planning the migration of an
application to Windows Azure, see “Planning and Designing Windows
Azure Applications.”

Managing, Monitoring, and Debugging
Windows Azure Applications

All storage and management subsystems in Windows Azure use REST-
based interfaces. They are not dependent on any .NET Framework or
Windows operating system technology. Any technology that can is-
sue HTTP or HTTPS requests can access Windows Azure facilities.

To learn about the Windows Azure managed and native library
APIs, and the storage services REST API, see “API References for
Windows Azure.”

The REST-based service management API can be used as an alter-
native to the Windows Azure web management portal. The API in-
cludes features to work with storage accounts, hosted services, cer-
tificates, affinity groups, locations, and subscription information. For
more information, see “Windows Azure Service Management REST API
Reference.” In addition, Windows Azure provides diagnostic services
and APIs for activities such as monitoring an application’s health. You
can use the Windows Azure Management Pack and System Center
Operations Manager 2007 R2 to discover Windows Azure applica-
tions, get the status of each role instance, and collect and monitor
performance information, Windows Azure events, and the .NET
Framework trace messages from each role instance. For more informa-
tion, see “Monitoring Windows Azure Applications.”

You can also use the Windows Azure PowerShell Cmdlets to browse
and manage Windows Azure compute and storage services, automate
deployment, and upgrade your Windows Azure applications, as well
as manage your diagnostics data.

For information about using the Windows Azure built-in trace
objects to configure diagnostics and instrumentation without using
Operations Manager, and about downloading the results, see “Collect-
ing Logging Data by Using Windows Azure Diagnostics.”

For information about debugging Windows Azure applications,
see “Troubleshooting and Debugging in Windows Azure” and “Debugging
Applications in Windows Azure.”

Chapter 7, “Application Life Cycle Management for Windows
Azure Applications” in the guide “Moving Applications to the
Cloud” contains information about managing Windows Azure
applications.

Windows Azure
includes features that
allow you to monitor
and debug cloud-
hosted services.

http://go.microsoft.com/fwlink/?LinkID=234603
http://msdn.microsoft.com/en-us/library/hh674495(VS.103).aspx
http://msdn.microsoft.com/en-us/library/hh674495(VS.103).aspx
http://msdn.microsoft.com/en-us/library/ff800682.aspx
http://msdn.microsoft.com/en-us/library/ff800682.aspx
http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/gg676009.aspx
http://wappowershell.codeplex.com/
http://go.microsoft.com/fwlink/?LinkID=234604
http://go.microsoft.com/fwlink/?LinkID=234604
http://go.microsoft.com/fwlink/?LinkID=234605
http://go.microsoft.com/fwlink/?LinkID=234606
http://go.microsoft.com/fwlink/?LinkID=234606
http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx

 9introduction to windows azure

Managing SQL Azure Databases
Applications access SQL Azure databases in exactly the same way
they access locally installed SQL Server instances using the managed
ADO.NET data access classes, Enterprise Library Data Access Applica-
tion Block (DAAB), OData, native ODBC, PHP, Ruby, or JDBC data
access technologies.

SQL Azure databases can be managed through the web portal,
SQL Server Management Studio, Visual Studio 2010 database tools,
and a range of other tools for activities such as moving and migrating
data, as well as command-line tools for deployment and administra-
tion.

A database manager is also available to make it easier to work
with SQL Azure databases. For more information see “Management
Portal for SQL Azure.“ For a list of other tools, see “Windows Azure
Downloads.“

SQL Azure supports a management API as well as management
through the web portal. For information about the SQL Azure man-
agement API see “Management REST API Reference.”

Upgrading Windows Azure Applications
After you deploy an application to Windows Azure, you will need to
update it as you change the role services in response to new require-
ments, code improvements, or to fix bugs. You can simply redeploy a
service by suspending and then deleting it, and then deploy the new
version. However, you can avoid application downtime by performing
staged deployments (uploading a new package and swapping it with
the existing production version), or by performing an in-place upgrade
(uploading a new package and applying it to the running instances of
the service).

For information about how you can perform service upgrades by
uploading a new package and swapping it with the existing produc-
tion version, see “How to Deploy a Service Upgrade to Production by
Swapping VIPs in Windows Azure.”

For information about how you can perform in-place upgrades,
including details of how services are deployed into upgrade and fault
domains and how this affects your upgrade options, see “How to Per-
form In-Place Upgrades on a Hosted Service in Windows Azure.”

If you only need to change the configuration information for a
service without deploying new code, you can use the web portal
or the management API to edit the service configuration file or
to upload a new configuration file.

http://go.microsoft.com/fwlink/?LinkID=234607
http://go.microsoft.com/fwlink/?LinkID=234607
http://www.windowsazure.com/en-us/develop/downloads/
http://www.windowsazure.com/en-us/develop/downloads/
http://go.microsoft.com/fwlink/?LinkID=234608
http://go.microsoft.com/fwlink/?LinkID=234609
http://go.microsoft.com/fwlink/?LinkID=234609
http://go.microsoft.com/fwlink/?LinkID=234610
http://go.microsoft.com/fwlink/?LinkID=234610

10 chapter one

Windows Azure Subscription and Billing Model
To use Windows Azure, you first create a billing account by signing up
for Microsoft Online Services or through the Windows Azure portal at
https://windows.azure.com/. The Microsoft Online Services customer
portal manages subscriptions to all Microsoft services. Windows
Azure is one of these, but there are others such as Business Productiv-
ity Online, Windows Office Live Meeting, and Windows Intune™
software and services.

This section is based on the information publicly available
at the time of this writing.

Every billing account has a single account owner who is identified
with a Windows Live ID. The account owner can create and manage
subscriptions, view billing information and usage data, and specify the
service administrator(s) for each subscription.

Administrators manage the individual hosted services for a Win-
dows Azure subscription using the Windows Azure portal at https://
windows.azure.com/. A Windows Azure subscription can include one
or more of the following:
•	 Hosted services, consisting of hosted roles and the instances

within each role. Roles and instances may be stopped, in
production, or in staging mode.

•	 Storage accounts, consisting of Table, BLOB, and Queue storage
instances.

•	 CDN instances.
•	 SQL Azure databases and Data Sync service.
•	 SQL Azure Reporting Services instances.
•	 Access Control, Service Bus, and Cache service instances.
•	 Virtual Network Connect and Traffic Manager instances.

Figure 1 illustrates the Windows Azure billing configuration for a
standard subscription.

The account owner
and the service
administrator for a
subscription can use
(and in many cases
should use) different
Live IDs.

https://mocp.microsoftonline.com/
https://windows.azure.com/
https://windows.azure.com/
https://windows.azure.com/

 11introduction to windows azure

figure 1
Windows Azure billing configuration for a standard subscription

For more information about Windows Azure billing, see “What
are the Billing Basics of Windows Azure?” and “Accounts and Billing in
SQL Azure.”

http://go.microsoft.com/fwlink/?LinkID=234611
http://go.microsoft.com/fwlink/?LinkID=234611
http://go.microsoft.com/fwlink/?LinkID=234612
http://go.microsoft.com/fwlink/?LinkID=234612

12 chapter one

Estimating Your Costs
Windows Azure charges are based on how you consume services such
as compute time, storage, and bandwidth. Compute time charges are
calculated on an hourly rate as well as a rate for the instance size.
Storage charges are based on the number of gigabytes and the number
of transactions. Prices for data transfer vary according to the geo-
graphic location you are in and generally apply to transfers between
the Microsoft data centers and your premises, but not on transfers
within the same data center.

To estimate the likely costs of a Windows Azure subscription, see
the following resources:
•	 Subscription overview for the various purchasing models such

as the pay-as-you-go and subscription model, including a tool
for measuring consumption, at
http://www.microsoft.com/windowsazure/pricing/.

•	 Pricing calculator at http://www.microsoft.com/windowsazure/
pricing-calculator/.

•	 TCO calculator at http://www.microsoft.com/windowsazure/
offers/#tcoCompare-LB.

Chapter 4, “How Much Will It Cost?” of the guide “Moving
Applications to the Cloud” provides additional information about
estimating the costs of hosting applications in Windows Azure.

More Information
There is a great deal of information available about Windows

Azure in the form of documentation, training videos, and white
papers. Here are some websites you can visit to learn more:
•	 The portal to information about Windows Azure is at

http://www.microsoft.com/WindowsAzure/. It has links to white
papers, tools such as the Windows Azure SDK for .NET, and
many other resources. You can also sign up for a Windows
Azure account there.

•	 The Windows Azure learning portal at
http://www.microsoft.com/WindowsAzure/learn.

•	 Wade Wegner and Steve Marx have a series of Channel 9
discussions about Windows Azure on Cloud Cover, located at
http://channel9.msdn.com/shows/Cloud+Cover/.

•	 Find answers to your questions on the Windows Azure Forum
at http://social.msdn.microsoft.com/Forums/en-US/windowsazure-
development/threads

You are billed for role
resources that are
used by a deployed
service, even if the
roles on those
services are not
running. If you don’t
want to get charged
for a service, delete
the deployments
associated with the
service.

http://www.microsoft.com/windowsazure/pricing/
http://www.microsoft.com/windowsazure/pricing-calculator/
http://www.microsoft.com/windowsazure/pricing-calculator/
http://www.microsoft.com/windowsazure/offers/%23tcoCompare-LB
http://www.microsoft.com/windowsazure/offers/%23tcoCompare-LB
http://msdn.microsoft.com/en-us/library/ff803375.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://www.microsoft.com/WindowsAzure/
http://www.microsoft.com/WindowsAzure/learn
http://channel9.msdn.com/shows/Cloud+Cover/
http://social.msdn.microsoft.com/Forums/en-US/windowsazuredevelopment/threads
http://social.msdn.microsoft.com/Forums/en-US/windowsazuredevelopment/threads

 13introduction to windows azure

•	 Steve Marx is a Windows Azure Technical Product Manager. His
blog is at http://blog.smarx.com/. It is a great source of news and
information on Windows Azure.

•	 Wade Wegner is the Technical Evangelist Lead for Windows
Azure. His blog is full of technical details and tips. It is at
http://www.wadewegner.com/.

•	 Windows Azure Feature Voting backlog at
http://www.mygreatwindowsazureidea.com to provide feedback,
submit and vote on features requests.

•	 The community site for the patterns & practices series of guides
at http://wag.codeplex.com/ provides links to online resources,
sample code, hands-on labs, feedback, and more.

•	 The community site for this release at http://entlib.uservoice.
com/forums/101257-windows-azure-integration-pack provides
links to additional online resources, issue tracker and discussion
forum.

Below are the links to references in this chapter:
•	 Windows Azure Guidance on CodePlex:

http://wag.codeplex.com/
•	 Windows Azure Features:

http://www.microsoft.com/windowsazure/features/
•	 Windows Azure Offers:

http://www.microsoft.com/windowsazure/offers/
•	 Overview of Creating a Hosted Service for Windows Azure:

http://go.microsoft.com/fwlink/?LinkID=234572
•	 Building an Application that Runs in a Hosted Service:

http://go.microsoft.com/fwlink/?LinkID=234587
•	 Creating Applications by Using a VM Role in Windows Azure:

http://go.microsoft.com/fwlink/?LinkID=234590
•	 Cloud Development:

http://go.microsoft.com/fwlink/?LinkID=234613
•	 Windows Azure Storage Services REST API Reference:

http://msdn.microsoft.com/en-us/library/dd179355.aspx
•	 Table Service Concepts:

http://msdn.microsoft.com/en-us/library/dd179463.aspx
•	 Table Service REST API:

http://msdn.microsoft.com/en-us/library/dd179423.aspx
•	 Understanding Block Blobs and Page Blobs:

http://msdn.microsoft.com/en-us/library/ee691964.aspx
•	 Blob Service REST API:

http://msdn.microsoft.com/en-us/library/dd135733.aspx

http://blog.smarx.com/
http://www.wadewegner.com/
http://www.mygreatwindowsazureidea.com
http://wag.codeplex.com/
http://entlib.uservoice.com/forums/101257-windows-azure-integration-pack
http://entlib.uservoice.com/forums/101257-windows-azure-integration-pack
http://wag.codeplex.com/
http://www.microsoft.com/windowsazure/features/
http://www.microsoft.com/windowsazure/offers/
http://go.microsoft.com/fwlink/?LinkID=234572
http://go.microsoft.com/fwlink/?LinkID=234587
http://go.microsoft.com/fwlink/?LinkID=234590
http://go.microsoft.com/fwlink/?LinkID=234613
http://msdn.microsoft.com/en-us/library/dd179355.aspx
http://msdn.microsoft.com/en-us/library/dd179463.aspx
http://msdn.microsoft.com/en-us/library/dd179423.aspx
http://msdn.microsoft.com/en-us/library/ee691964.aspx
http://msdn.microsoft.com/en-us/library/dd135733.aspx

14 chapter one

•	 Queue Service Concepts:
http://msdn.microsoft.com/en-us/library/dd179353.aspx

•	 Queue Service REST API:
http://msdn.microsoft.com/en-us/library/dd179363.aspx

•	 Windows Azure Drive:
http://go.microsoft.com/?linkid=9710117

•	 SQL Azure Database:
http://msdn.microsoft.com/en-us/library/ee336279.aspx

•	 Microsoft Sync Framework Developer Center:
http://msdn.microsoft.com/en-us/sync

•	 Caching Service (Windows Azure):
http://go.microsoft.com/fwlink/?LinkID=234591

•	 Delivering High-Bandwidth Content with the Windows Azure
CDN:
http://go.microsoft.com/fwlink/?LinkID=234592

•	 Connecting Local Computers to Windows Azure Roles:
http://go.microsoft.com/fwlink/?LinkID=234593

•	 Windows Azure Traffic Manager:
http://go.microsoft.com/fwlink/?LinkID=234594

•	 Access Control Service 2.0:
http://go.microsoft.com/fwlink/?LinkID=234595

•	 A Guide to Claims-Based Identity and Access Control (2nd
Edition):
http://msdn.microsoft.com/en-us/library/ff423674.aspx

•	 Service Bus:
http://go.microsoft.com/fwlink/?LinkID=234596

•	 SQL Azure Reporting:
http://go.microsoft.com/fwlink/?LinkID=234597

•	 Windows Azure Marketplace:
http://go.microsoft.com/fwlink/?LinkID=234598

•	 Windows Azure Marketplace:
http://go.microsoft.com/fwlink/?LinkID=234599

•	 Windows Azure Tools:
http://www.microsoft.com/windowsazure/tools/

•	 Learn Windows Azure and SQL Azure:
http://www.microsoft.com/windowsazure/tutorials/

•	 Design. Code. Scale.:
http://www.microsoft.com/windowsazure/getstarted/

•	 Developing Applications for Windows Azure:
http://go.microsoft.com/fwlink/?LinkID=234600

http://msdn.microsoft.com/en-us/library/dd179353.aspx
http://msdn.microsoft.com/en-us/library/dd179363.aspx
http://go.microsoft.com/?linkid=9710117
http://msdn.microsoft.com/en-us/library/ee336279.aspx
http://msdn.microsoft.com/en-us/sync
http://go.microsoft.com/fwlink/?LinkID=234591
http://go.microsoft.com/fwlink/?LinkID=234592
http://go.microsoft.com/fwlink/?LinkID=234593
http://go.microsoft.com/fwlink/?LinkID=234594
http://go.microsoft.com/fwlink/?LinkID=234595
http://msdn.microsoft.com/en-us/library/ff423674.aspx
http://go.microsoft.com/fwlink/?LinkID=234596
http://go.microsoft.com/fwlink/?LinkID=234597
http://go.microsoft.com/fwlink/?LinkID=234598
http://go.microsoft.com/fwlink/?LinkID=234599
http://www.microsoft.com/windowsazure/tools/
http://www.microsoft.com/windowsazure/tutorials/
http://www.microsoft.com/windowsazure/getstarted/
http://go.microsoft.com/fwlink/?LinkID=234600

 15introduction to windows azure

•	 Windows Azure Training Kit:
http://go.microsoft.com/fwlink/?LinkID=234601

•	 Real World: Startup Lifecycle of a Windows Azure Role:
http://go.microsoft.com/fwlink/?LinkID=234602

•	 Development (SQL Azure Database):
http://go.microsoft.com/fwlink/?LinkID=234603

•	 Windows Azure Assessment/Planning:
http://www.microsoft.com/windowsazure/tools/#assessment

•	 API References for Windows Azure:
http://msdn.microsoft.com/en-us/library/ff800682.aspx

•	 Windows Azure Service Management REST API Reference:
http://msdn.microsoft.com/en-us/library/ee460799.aspx

•	 Monitoring Windows Azure Applications:
http://msdn.microsoft.com/en-us/library/gg676009.aspx

•	 Windows Azure PowerShell Cmdlets:
http://wappowershell.codeplex.com/

•	 Collecting Logging Data by Using Windows Azure Diagnostics:
http://go.microsoft.com/fwlink/?LinkID=234604

•	 Troubleshooting and Debugging in Windows Azure:
http://go.microsoft.com/fwlink/?LinkID=234605

•	 Debugging Applications in Windows Azure:
http://go.microsoft.com/fwlink/?LinkID=234606

•	 “Application Life Cycle Management for Windows Azure
Applications” in Moving Applications to the Cloud:
http://msdn.microsoft.com/en-us/library/ff803362.aspx

•	 Management Portal for SQL Azure:
http://go.microsoft.com/fwlink/?LinkID=234607

•	 Windows Azure Tools:
http://www.microsoft.com/windowsazure/tools/#sqlazure

•	 Management REST API Reference:
http://go.microsoft.com/fwlink/?LinkID=234608

•	 How to Deploy a Service Upgrade to Production by Swapping
VIPs in Windows Azure:
http://go.microsoft.com/fwlink/?LinkID=234609

•	 How to Perform In-Place Upgrades on a Hosted Service in
Windows Azure:
http://go.microsoft.com/fwlink/?LinkID=234610

•	 Microsoft Online Services:
https://mocp.microsoftonline.com/

http://go.microsoft.com/fwlink/?LinkID=234601
http://go.microsoft.com/fwlink/?LinkID=234602
http://go.microsoft.com/fwlink/?LinkID=234603
http://msdn.microsoft.com/en-us/library/ff800682.aspx
http://msdn.microsoft.com/en-us/library/ee460799.aspx
http://msdn.microsoft.com/en-us/library/gg676009.aspx
http://wappowershell.codeplex.com/
http://go.microsoft.com/fwlink/?LinkID=234604
http://go.microsoft.com/fwlink/?LinkID=234605
http://go.microsoft.com/fwlink/?LinkID=234606
http://msdn.microsoft.com/en-us/library/ff803362.aspx
http://go.microsoft.com/fwlink/?LinkID=234607
http://go.microsoft.com/fwlink/?LinkID=234608
http://go.microsoft.com/fwlink/?LinkID=234609
http://go.microsoft.com/fwlink/?LinkID=234610
https://mocp.microsoftonline.com/

16 chapter one

•	 “What are the Billing Basics of Windows Azure?” in “Windows
Azure Platform”
http://go.microsoft.com/fwlink/?LinkID=234611

•	 Accounts and Billing in SQL Azure:
http://go.microsoft.com/fwlink/?LinkID=234612

•	 Subscription overview for the various purchasing models:
http://www.microsoft.com/windowsazure/pricing/

•	 Pricing calculator:
http://www.microsoft.com/windowsazure/pricing-calculator/

•	 TCO calculator:
http://www.microsoft.com/windowsazure/offers/#tcoCompare-LB

•	 “How Much Will It Cost?” in Moving Applications to the Cloud:
http://msdn.microsoft.com/en-us/library/ff803375.aspx

•	 Moving Applications to the Cloud, 2nd Edition:
http://msdn.microsoft.com/en-us/library/ff728592.aspx

To access web resources more easily, see the online version of the
bibliography on MSDN:
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

http://go.microsoft.com/fwlink/?LinkID=234611
http://go.microsoft.com/fwlink/?LinkID=234612
http://www.microsoft.com/windowsazure/pricing/
http://www.microsoft.com/windowsazure/pricing-calculator/
http://www.microsoft.com/windowsazure/offers/%23tcoCompare-LB
http://msdn.microsoft.com/en-us/library/ff803375.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

 17

2 Introduction to
Enterprise Library Integration

Pack for Windows Azure

The Microsoft® Enterprise Library Integration Pack for Windows
Azure extends Enterprise Library to include support for Windows
Azure™ technology platform applications. It includes additional ap-
plication blocks to meet the requirements of cloud-hosted applica-
tions.

What Is Enterprise Library?
Enterprise Library provides many highly configurable features that
make it much easier for you to manage the repetitive tasks, known as
crosscutting concerns, which occur in many places in your applica-
tions. These tasks include logging, validation, caching, exception
management, and more. In addition, the dependency injection con-
tainer provided by Enterprise Library can help you to simplify and
decouple your designs, make them more testable and understandable,
and help you to produce more efficient designs and implementations
of all kinds of applications.

Enterprise Library consists of a collection of application blocks
and a core infrastructure. All of these are reusable software compo-
nents designed to assist developers with common enterprise develop-
ment challenges. Each application block is designed to address a spe-
cific set of concerns. For example, the Logging Application Block
simplifies the implementation of common logging functions in your
application and enables you to write logging information to a variety
of locations; the Data Access Application Block simplifies the devel-
opment of common data access tasks such as reading data for display
in a UI or submitting changed data back to the underlying database
system.

18 chapter two

As shown in Figure 1, the application blocks in Enterprise Library
are:
•	 The Caching Application Block. You can use this application block

to incorporate a local cache into your applications.
•	 The Cryptography Application Block. This application block can

be used to incorporate hashing and symmetric encryption into
your applications.

•	 The Data Access Application Block. Use this application block to
incorporate standard database functionality into your applica-
tions.

•	 The Exception Handling Application Block. Developers and policy
makers can use this application block to create a consistent
strategy for processing exceptions that occur throughout the
architectural layers of enterprise applications.

•	 The Logging Application Block. Developers can use this applica-
tion block to include standard logging functionality in their
applications and systems administrators can use the configura-
tion tool to adjust the granularity of logging at run time.

•	 The Policy Injection Application Block. This block contains legacy
code for backwards compatibility with existing applications. The
new functionality is available by using the Unity interception
mechanism and call handlers located in the related application
block assemblies.

•	 The Security Application Block. Developers can use this applica-
tion block to incorporate authorization and security caching
functionality into their applications.

•	 The Validation Application Block. Developers can use this applica-
tion block to create validation rules for business objects that
can be used across different layers of their applications.

•	 Unity Dependency Injection and Interception. Developers can use
these techniques to implement a lightweight, extensible depen-
dency injection container with support for constructor, prop-
erty, and method call injection, and to capture calls to target
objects and add additional functionality to the object.

http://msdn.microsoft.com/en-gb/library/ff664753(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664484(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664408(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664698(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664569(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664572(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664771(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664356(PandP.50).aspx
http://msdn.microsoft.com/unity

 19introduction to enterprise libr ary integr ation pack for windows azure

figure 1
Enterprise Library components

Enterprise Library is configuration-driven and supports both pro-
grammatic and external configuration. As well as the application
blocks, Enterprise Library contains configuration tools, plus a set of
core functions that manage tasks applicable to all of the blocks.

The goals of Enterprise Library are the following:
•	 Consistency. All Enterprise Library application blocks feature

consistent design patterns and implementation approaches.
•	 Extensibility. All application blocks include defined extensibility

points that allow developers to customize the behavior of the
blocks by adding their own code.

•	 Ease of use. Enterprise Library offers numerous usability
benefits, including a graphical configuration tool, a simple
installation procedure, and clear and complete documentation
and samples.

•	 Integration. Enterprise Library application blocks are designed
to work well together and are tested to make sure that they do.
However, you do not have to use them together.
To learn more about Enterprise Library and the application blocks,

visit the main Enterprise Library site on MSDN® at Enterprise Library
5.0 – May 2011.

http://msdn.microsoft.com/en-us/library/ff632023.aspx
http://msdn.microsoft.com/en-us/library/ff632023.aspx

20 chapter two

What Is the Enterprise Library Integration Pack
for Windows Azure?

The Enterprise Library Integration Pack for Windows Azure extends
Enterprise Library 5.0 to add additional support for developing and
managing Windows Azure applications. It shares the same benefits as
the Enterprise Library and helps developers achieve the same goals.

The Enterprise Library Integration Pack for Windows Azure in-
cludes:
•	 The Autoscaling Application Block to help you to automatically

scale your Windows Azure applications.
•	 The Transient Fault Handling Application Block to help you make

your Windows Azure applications more resilient when they
encounter transient fault conditions.

•	 The Blob configuration source to store your Enterprise Library
configuration in Azure blob storage.

•	 A protected configuration provider.
•	 Windows PowerShell® command line interface cmdlets to

manipulate the Autoscaling Application Block.
•	 Updated database creation scripts (for the Logging Application

Block and Caching Application Block) to use SQL Azure™
technology platform.

•	 Reference documentation.
•	 A developer’s guide.
•	 A reference implementation that illustrates the use of the new

application blocks.
The Enterprise Library Integration Pack for Windows Azure is

one of several existing and planned integration packs for Enterprise
Library.

For more information about Enterprise Library, see Microsoft
Enterprise Library 5.0 – May 2011 and the Developer’s Guide.

For more information about the Silverlight Integration Pack for
use with Microsoft Silverlight® browser plug-in applications, see
Enterprise Library 5.0 Silverlight Integration Pack.

http://msdn.microsoft.com/en-us/library/hh680892(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff632023.aspx
http://msdn.microsoft.com/en-us/library/ff632023.aspx
http://msdn.microsoft.com/en-us/library/ff953181(PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkID=234632

 21introduction to enterprise libr ary integr ation pack for windows azure

More Information
For more information about the Enterprise Library application blocks,
see the following resources on MSDN:
•	 Microsoft Enterprise Library 5.0 – May 2011:

http://msdn.microsoft.com/en-us/library/ff632023.aspx
•	 Developer’s Guide:

http://msdn.microsoft.com/en-us/library/ff953181(v=PandP.50).
aspx

•	 Enterprise Library 5.0 Silverlight Integration Pack:
http://entlib.codeplex.com/wikipage?title=EntLib5Silverlight

•	 The Caching Application Block:
http://msdn.microsoft.com/en-gb/library/ff664753(PandP.50).aspx

•	 The Cryptography Application Block:
http://msdn.microsoft.com/en-gb/library/ff664484(PandP.50).aspx

•	 The Data Access Application Block:
http://msdn.microsoft.com/en-gb/library/ff664408(PandP.50).aspx

•	 The Exception Handling Application Block:
http://msdn.microsoft.com/en-gb/library/ff664698(PandP.50).aspx

•	 The Logging Application Block:
http://msdn.microsoft.com/en-gb/library/ff664569(PandP.50).aspx

•	 The Policy Injection Application Block:
http://msdn.microsoft.com/en-gb/library/ff664572(PandP.50).aspx

•	 The Security Application Block:
http://msdn.microsoft.com/en-gb/library/ff664771(PandP.50).aspx

•	 The Validation Application Block:
http://msdn.microsoft.com/en-gb/library/ff664356(PandP.50).aspx

•	 Unity Dependency Injection and Interception:
http://msdn.microsoft.com/unity

For more information about the Autoscaling Application Block,
see “The Autoscaling Application Block” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680892(v=PandP.50).aspx
For more information about the Transient Fault Handling Applica-
tion Block, see “The Transient Fault Handling Application Block”
on MSDN:
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
To access web resources more easily, see the online version of the
bibliography on MSDN:
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

http://msdn.microsoft.com/en-us/library/ff632023.aspx
http://msdn.microsoft.com/en-us/library/ff953181(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff953181(v=PandP.50).aspx
http://entlib.codeplex.com/wikipage?title=EntLib5Silverlight
http://msdn.microsoft.com/en-gb/library/ff664753(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664484(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664408(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664698(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664569(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664572(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664771(PandP.50).aspx
http://msdn.microsoft.com/en-gb/library/ff664356(PandP.50).aspx
http://msdn.microsoft.com/unity
http://msdn.microsoft.com/en-us/library/hh680892(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

 23

3 The Tailspin Scenario

This chapter introduces a fictitious company named Tailspin. It de-
scribes Tailspin’s plan to use Microsoft Enterprise Library to further
develop its flagship online service named Surveys. Surveys is a cloud-
based service, hosted on the Windows Azure™ technology platform,
that enables other companies or individuals to conduct their own
online surveys and analyze the results. As with any company planning
to update one of its key applications, there are many issues to con-
sider and challenges to meet, particularly because this is the first time
the developers at Tailspin have used Enterprise Library. The chapters
that follow this one describe the benefits to Tailspin of using Enter-
prise Library and show, step by step, how Tailspin modified and re-
architected the Surveys application to use Enterprise Library.

The Tailspin Company
Tailspin is a startup ISV company of approximately 20 employees that
specializes in developing cloud solutions using Microsoft® technolo-
gies. The developers at Tailspin are knowledgeable about various Mi-
crosoft products and technologies, including Windows Azure, the
.NET Framework, ASP.NET MVC, SQL Server®, and Microsoft Visual
Studio® development system. These developers are aware of the ca-
pabilities of Enterprise Library, but have not yet incorporated it into
any of their cloud-based applications.

The Surveys application was the first of several innovative online
services that Tailspin took to market. As a startup, Tailspin decided to
specialize in cloud-hosted solutions in order to minimize its hardware
investments and maximize its ability to reach a global audience. Tail-
spin hoped that some of these cloud-hosted services would grow
rapidly, and the company wanted to have the ability to respond
quickly to increasing demand. Similarly, it fully expects some of these
cloud-based services to fail, and it does not want to be left with re-
dundant hardware on its hands. The Surveys application has been a

24 chapter three

major success for Tailspin, with thousands of existing customers
around the world, and new customers signing up every day.

Tailspin’s Strategy
Tailspin is an innovative and agile organization, well placed to exploit
new technologies and the business opportunities offered by the
cloud. Tailspin’s strategy has been to embrace the cloud and gain a
competitive advantage as an early adopter, rapidly gaining some expe-
rience, and then quickly expanding on what it has learned. This strat-
egy can be described as “try, fail fast, learn, and then try again.” The
Surveys application has been a huge commercial success for Tailspin,
but its success has revealed some problems with the initial implemen-
tation in terms of its flexibility, manageability, and maintainability.

The Surveys Application
The Surveys application enables Tailspin’s customers to design a sur-
vey, publish it, and collect the results for analysis. A survey is a collec-
tion of questions, each of which can be one of several types, such as
multiple choice, numeric range, or free text. Customers begin by cre-
ating a subscription with the Surveys service, which they use to man-
age their surveys and to apply branding by using styles and logo im-
ages. Customers can also select a geographic location for their
account, so that they can host their surveys as close as possible to the
survey audience. The Surveys application allows users to try out the
application for free, and to sign up for one of several different pack-
ages that offer different collections of services for a monthly fee.

Figure 1 illustrates the Surveys application and highlights the
three different groups of users (customers, Tailspin administrators,
and Surveys participants) who interact with it.

 25the tailspin scenario

figure 1
The Surveys application

Customers who have subscribed to the Surveys service (or who
are using a free trial) access the Subscriber website, which enables
them to design their own surveys, apply branding and customization,
and collect and analyze the survey results. Depending on the package
they select, they have access to different levels of functionality
within the Surveys application. Tailspin expects its customers to be of
various sizes and from all over the world, and customers can select a
geographic location for their account and surveys.

Tailspin wants to design the service in such a way that most of the
administrative and configuration tasks are “self-service” and can be
performed by the subscriber with minimal intervention by Tailspin
staff.

The public website enables the people participating in the survey
to complete their responses to the survey questions. The survey cre-
ator will let their survey audience know what URL to visit to complete
the survey.

The Tailspin website enables staff at Tailspin to manage the ap-
plication and manage the subscriber accounts. All three websites
(Subscriber, Public, and Tailspin) interact with the core services that
comprise the Surveys application and provide access to the applica-
tion’s data storage.

In the world of
Software as a Service
(SaaS), subscribers
are commonly known
as “Tenants.” We
commonly refer to
applications like
Tailspin Surveys as
“multi-tenant”
applications.

26 chapter three

Tailspin’s Goals and Concerns
Tailspin faces several challenges with the current version of the Sur-
veys application. The initial development was done quickly in order to
be early to market. This resulted in some compromises during the
development process whereby some features were sacrificed, and the
design process was tailored to meet tight deadlines, not to optimize
maintainability and extensibility. Tailspin sees this next phase in the
life of the Surveys application as a consolidation phase that will lay
the groundwork for the future development of the application and
address the shortcomings of the initial implementation.

Here is how the original application works. First, customers create
surveys. These might be associated with product launches or market-
ing campaigns, or they might be seasonal, perhaps associated with a
holiday period. Often, customers who use the survey application set
up these surveys with a very short lead time. Surveys usually run for a
fixed, short period of time but may have a large number of respon-
dents. This means that the Surveys application experiences bursts of
usage, and Tailspin has very little warning of when these bursts occur.
Tailspin now offers the Surveys application to customers around the
world, and because the nature of the Surveys application includes
sudden bursts in demand, it must be able to quickly expand or con-
tract its infrastructure in different geographical locations. Up until
now, Tailspin has relied on a process that requires an operator to
manually add and remove role instances based on performance data
collected from the application or in anticipation of known or planned
events. In order to better serve its increasing number of customers
and to control its costs, Tailspin would like to automate the scaling
process.

The subscriber and public websites also have different scalability
requirements. Thousands of users might complete a survey, but only
a handful of users from each subscriber will edit existing surveys or
create new surveys. Tailspin wants to optimize the resources for each
of these scenarios.

When problems occur in the Surveys application, Tailspin some-
times struggles to resolve them quickly enough to meet its service-
level agreements (SLA). Tailspin wants to be able to respond to issues
and problems with the Surveys application more effectively by having
better diagnostics data that is easily accessible.

Resource elasticity
and geo-distribution
are key properties of
the Windows Azure
platform.

 27the tailspin scenario

Tailspin wants to be able to maintain its competitive advantage by
rapidly rolling out new features to existing services or gain competi-
tive advantage by being first to market with new products and ser-
vices. For the Surveys application, Tailspin wants a platform with a
clear, consistent architecture that is easy to extend and enhance.

The Tailspin business model is to charge subscribers a monthly fee
for a service such as the Surveys application and, because of the
global market they are operating in, Tailspin wants its prices to be
competitive. Tailspin must then pay the actual costs of running the
application, so in order to maintain their profit margin Tailspin must
tightly control the running costs of the services they offer to their
customers.

In this scenario, Tailspin’s customers (the subscribers) are not
Windows Azure customers. Subscribers pay Tailspin, who in
turn pays Microsoft for their use of Windows Azure features.

Tailspin wants to ensure that customer’s data is kept safe. For
example, a customer’s data must be private to that customer, there
must be multiple physical copies of the survey data, and customers
should not be able to lose data by accidently deleting a survey. In ad-
dition, all existing survey data must be preserved whenever Tailspin
updates the application.

As the number of subscribers grows, Tailspin wants to improve
the resilience of the Surveys application to ensure that it can continue
to meet its SLAs. This is particularly important for some of Tailspin’s
larger customers.

Finally, Tailspin would like to be able to leverage the existing skills
of its developers, minimize any retraining necessary to build the Sur-
veys application, and make it easy for developers to leverage the ex-
perience they have gained working on the Surveys application in
Tailspin’s other products.

The Surveys Application Architecture
To achieve the goals of the Surveys application, Tailspin implemented
the application as a cloud-based service using Windows Azure. Figure
2 shows a high-level view of this architecture.

28 chapter three

figure 2
The Surveys application architecture

The architecture of the Surveys Application is straightforward
and one that many other Windows Azure applications use. The core
of the application uses Windows Azure web roles, worker roles, and
storage. Figure 2 shows the three groups of users who access the ap-
plication: the application owner, the public, and subscribers to the
Surveys service (in this example, Adatum and Fabrikam). It also high-
lights how the application uses SQL Azure™ technology platform to
provide a mechanism for subscribers to dump their survey results into
a relational database to analyze the results in detail.

This guide discusses aspects of the design and implementation in
detail and describes how the various web and worker roles that com-
prise the Surveys application make use of the Enterprise Library ap-
plication blocks and services.

Some of the specific issues that the guide covers include how
Tailspin implemented an autoscaling feature that enables the applica-
tion to automatically scale up and scale down by adding and removing
role instances and how Tailspin improved the resilience of the Surveys
application to transient fault conditions.

Tailspin built the Surveys application using the latest available
technologies: Visual Studio 2010, ASP.NET MVC 3.0, and .NET Frame-
work 4.

 29the tailspin scenario

More Information
For information about building a Windows Phone 7 client application
for the Tailspin Surveys application, see the book, Windows Phone 7
Developer Guide at http://go.microsoft.com/fwlink/?LinkID=234571

http://go.microsoft.com/fwlink/?LinkID=234571

 31

What is Autoscaling?
One of the key benefits that the Windows Azure™ technology plat-
form delivers is the ability to rapidly scale your application in the
cloud in response to changes in demand.

When you deploy an application to Windows Azure, you deploy
roles: web roles for the externally facing portions of your application
and worker roles to handle back-end processing. When you run your
application in Windows Azure, your roles run as role instances (you
can think of role instances as virtual machines). You can specify how
many role instances you want for each of your roles; the more in-
stances you have, the more computing power you have available for
that role, but the more it will cost you. There are, of course, some
specific design requirements if your roles are to operate correctly
when there are multiple instances of that role, but Windows Azure
looks after the infrastructure requirements for you. For more informa-
tion about design requirements, see “Building a Scalable, Multi-Tenant
Application for Windows Azure.”

You can specify the size and the number of instances you require
for each of your roles when you first deploy an application to Win-
dows Azure. You can also add or remove role instances on the fly
while the application is running, either manually through the Win-
dows Azure portal, or programmatically by using the Windows Azure
Management API.

By adding and removing role instances to your Windows Azure
application while it is running, you can balance the performance of
the application against its running costs. You can add new instances
when demand is high, and remove instances when you no longer need
them in order to reduce running costs.

If you rely on manual interventions to scale your application, you
may not always achieve the optimal balance between costs and per-
formance; an operator may respond late, or underestimate the number
of role instances that you need to maintain throughput.

4 Autoscaling and
Windows Azure

Scalability is a key feature of
the Windows Azure platform.

Scaling by adding
additional instances is
often referred to as
scaling out. Windows
Azure also supports
scaling up by using
larger role instances
instead of more role
instances.

http://msdn.microsoft.com/en-us/library/ff966483.aspx
http://msdn.microsoft.com/en-us/library/ff966483.aspx

32 chapter four

An autoscaling solution reduces the amount of manual work in-
volved in dynamically scaling an application. It can do this in two dif-
ferent ways: either preemptively by setting constraints on the number
of role instances based on a timetable, or reactively by adjusting the
number of role instances in response to some counter(s) or
measurement(s) that you can collect from your application or from
the Windows Azure environment.

You will still need to evaluate the results of your autoscaling solu-
tion on a regular basis to ensure that it is delivering the optimal bal-
ance between costs and performance. Your environment is unlikely to
be static; overall, the numbers of users can change, access patterns by
users can change, your application may perform differently as it stores
more data, or you may deploy your application to additional Windows
Azure data centers.

Scaling your application by adjusting the number of role instances
may not be the best or only way to scale your application. For example,
you may want to modify the behavior of your application in some way
during bursts in demand, or to alter the number of Windows Azure
queues, or the size of your SQL Azure database. An autoscaling solu-
tion may not be limited to just adjusting the number of role instances.

What is the Autoscaling Application Block?
The Autoscaling Application Block (“WASABi”) is a part of the Enter-
prise Library Integration Pack for Windows Azure.

The application block allows you to define how your Windows
Azure Application can automatically handle changes in the load levels
that it might experience over time. It helps you minimize your opera-
tional costs, while still providing excellent performance and availabil-
ity to your users. It also helps to reduce the number of manual tasks
that your operators must perform.

The application block works through a collection of user-defined
rules, which control when and how your application should respond
when the load varies. Rules are either constraint rules that set limits on
the minimum and maximum number of role instances in your Win-
dows Azure application, or reactive rules that adjust the current num-
ber of role instances based on counters or measurements that you
collect from your application.

You also need to consider
the cost of having human
operators performing this
task, especially if you have
hundreds or even thousands
of role instances running
in Windows Azure data
centers around the globe.

The Autoscaling
Application Block
shares with other
Enterprise Library
blocks many design
features, such as how
you configure it and
use it in your code.

You should evaluate your
autoscaling behavior on
a regular basis. Even
with autoscaling in place,
fire-and-forget is not the
best practice.

 33autoscaling and windows azure

Constraint rules can have an associated timetable that specifies
the times when the rule is active. Constraint rules enable you to pro-
actively set the number of role instances that your application can
use; the minimum number of role instances helps you to meet your
service level agreement (SLA) commitments, the maximum number of
role instances helps you to control the running costs of your Win-
dows Azure application.

Reactive rules use values that are derived either from system
metrics such as CPU utilization, or from business metrics such as the
number of unprocessed documents in the application. The application
block collects these metrics and saves them as data points. A data
point is simply the value of a metric with an associated timestamp to
indicate when the application block collected the value. A reactive
rule uses an aggregate value (such as average, maximum, minimum, or
last) calculated from data points over a specified period. A reactive
rule compares the current aggregate value to a threshold value, and
based on the result performs one or more actions; for example, adding
two new web role instances and notifying an operator. Reactive rules
help your application respond to unexpected bursts (or collapses) in
your application’s workload.

The Autoscaling Application Block supports the following tech-
niques for handling varying load levels:
•	 Instance Scaling. The Autoscaling Application Block varies the

number of role instances to accommodate variations in the load
on the application.

•	 Throttling. The Autoscaling Application Block limits or disables
certain (relatively) expensive operations in your application
when the load is above certain thresholds.
These two autoscaling techniques are not mutually exclusive, and

you can use both to implement a hybrid autoscaling solution in your
application.

Figure 1 shows the relationship between the Autoscaling Applica-
tion Block and your Windows Azure application.

Rules are stored in XML
documents. This makes
them easy to edit. It also
makes it possible to build
custom editors for the rules
in your application. The
Tailspin Surveys application
shows how this can be done.

In Windows Azure,
changing the number
of role instances
takes time, so to
respond quickly you
may want to throttle
your application until
the new role
instances are
available.

34 chapter four

figure 1
The Autoscaling Application Block and Windows Azure

This diagram illustrates how the Autoscaling Application Block
collects data from your Windows Azure environment and uses that
data in rules to determine if it should initiate any scaling actions in
your Windows Azure application.

The Autoscaling Application Block can be hosted either in
Windows Azure or on premises.

Instance Autoscaling
The Autoscaling Application Block allows you to automatically scale
out the number of Windows Azure role instances (web and worker
roles) to closely match the demands of your application. This is an
effective technique for controlling the running costs of your applica-
tion, because in Windows Azure, you only pay for instances that you
actually use.

Of course, it is important to set explicit boundaries for the auto-
scaling behavior in your Windows Azure application. Because you are
billed for each provisioned role instance (regardless whether running
or stopped), you must set a maximum number of instances for each

It’s important to
control the costs of
running the applica-
tion, keeping the
number of role
instances to a
minimum helps us
achieve that goal.

 35autoscaling and windows azure

role type in your application. Otherwise, an application error that
causes your number of role instances to increase could result in a
significant (and unexpected) cost at the end of the month. You can
also set a minimum number of role instances to ensure that your ap-
plication runs and is resilient in the face of any failures.

You must have a minimum of two role instances to be eligible for
the Windows Azure SLA guarantees.

You shouldn’t expect the Autoscaling Application Block to be
able to start new role instances instantaneously; it takes Windows
Azure a finite time to launch (or terminate) a role instance. The time
taken is typically in the order of 10 minutes (at the time of writing this
guide), but this can vary depending on a number of factors; for ex-
ample, the number of role instances you are adding, the size of the
role instances you are adding, and the current level of activity within
the Windows Azure data center.

At the time of this writing, partial compute instance hours are
billed as full compute hours for each clock hour an instance is
deployed. For example, if you deploy a Small compute instance at
10:50 and delete the deployment at 11:10, then you will be billed
for two Small compute hours, one compute hour for usage during
10:50 to 11:00 and another compute hour for usage during 11:00
to 11:10. Therefore, it makes sense to keep new instances alive for
the remainder of the clock hour during which they were started.
For more information, see “Usage Charge Details for Windows
Azure Bills.”

The stabilizer takes this into account for reactive rules
(explained below), but you should consider designing your
constraint rules (also explained below) so that they scale down
just before the end of the clock hour.

Application Throttling
Instead of adjusting the number of role instances in response to
changes in demand, you can use the Autoscaling Application Block to
change the way your application behaves under various conditions.
This technique allows you to specify modes of operation that are ap-
propriate to certain load levels or times of day or user type.

For example, you can define different modes of operation for
normal operation, for when there is very little load on your applica-
tion, or for extreme bursts in activity.
•	 When the load on your application is very low, you might want

to perform certain background processing tasks that are not
time critical, but that might be resource intensive, such as
exporting data or calculating statistics. If your SLA requires you

It’s important to choose
carefully what you throttle.
Users will expect the core
functionality of your
application to be available
at all times.

http://go.microsoft.com/fwlink/?LinkID=234626
http://go.microsoft.com/fwlink/?LinkID=234626

36 chapter four

to have a minimum of two instances to run your application,
then you can use this technique to better utilize these instances
by occupying them with background processing tasks.

•	 Under normal load, you might want to avoid executing back-
ground tasks, but otherwise run your application as normal.

•	 When an extreme burst in activity occurs, you might want to
disable certain functionality so that your application remains
usable. For example, you can disable autocomplete functionality,
switch to a lightweight version of your user interface or disable
some functionality for trial users while still providing full
support for paying customers.
You can use application throttling very effectively in combination

with instance scaling. It can take up to 10 minutes for Windows Azure
to add a new role instance, so when a sudden burst of activity occurs,
you can use application throttling to help reduce the load on your
application while the new role instances start. However, if you have a
large number of instances, it can take time for the configuration
change to propagate to all the instances, by which time your new in-
stances may have started. In addition, if your application is already
scaled to the maximum number of role instances permitted by your
constraint rules, then application throttling can help to provide the
maximum performance for the core functionality in your application.

Rules and Actions
The Autoscaling Application Block uses rules and actions to deter-
mine how your application should respond to changes in demand. As
described earlier, there are two types of rules: constraint rules and
reactive rules, each with their own actions.

Constraint Rules
For many applications, the load pattern is predictable. For example, in
a business application, the highest load is during office hours; on a
consumer website, the highest load is between 18:00 and 20:00. In
these scenarios, you can proactively scale your Windows Azure ap-
plication to meet the anticipated additional workload. You can use
constraint rules to address this scenario.

Constraint rules consist of one or more actions to set minimum
and maximum values for the number of instances of a target, a rank,
and optionally a timetable that defines when the rule is in effect. If
there is no timetable, the rule is always in effect.

You can use a timetable to control the number of role instances
that should be available at particular times. For example, you could

Depending on the size and
complexity of your
application, throttling may
not happen faster than
adding a new instance.
Therefore, you must test it
in your environment. You
should also remember that
not all of your instances will
react to throttling at the
same time.

You should set the
minimum value to
ensure that you
continue to meet
your SLAs. You
should set the
maximum value to
limit your costs and
meet your budgetary
goals.

 37autoscaling and windows azure

create a rule to increase the minimum and maximum number of web
and worker role instances in your application between 9:00 and 11:00
on Monday mornings when you know that demand for your applica-
tion will be higher than usual.

You can also specify default rules that are always active and that
specify default maximum and minimum values for the number of role
instances for each web and worker role type in your application. Im-
portantly, constraint rules always take precedence over reactive
rules, to ensure that these reactive rules cannot continue to add new
role instances above a maximum value or remove role instances below
a minimum level.

By default (at the time of this writing), Windows Azure subscrip-
tions are permitted to use up to 20 CPU cores. This value can be
increased on request. For more information, see the Windows
Azure Support page.

It is possible that multiple constraint rules are in effect at the
same time because of overlapping times in their timetables. In this
case, the Autoscaling Application Block uses the rank of the rules to
determine which rule takes precedence. Higher-ranked rules override
lower ranked rules.

Here are some examples of constraint rules:
•	 For web role A, the default minimum number of instances is set

to two and the maximum to four. This rule uses the default rank.
•	 On relatively busy Fridays, the minimum number of instances is

set to four and the maximum to eight for web role A. This rule
uses a higher rank.

•	 For worker role B, the default constraint is a minimum of two
instances and a maximum of four instances.

•	 On Saturdays and Sundays between 2:00 PM and 6:00 PM, for
worker role B, set the minimum number of instances to three
and the maximum to six.

•	 On the last Friday of every month, for scale group A, set the
minimum number of instances to three and the maximum to six
(scale groups are described later in this chapter).
Figure 2 illustrates the behavior of the Autoscaling Application

Block when you have multiple constraint rules defined. The scenario
displayed in the diagram uses three separate constraint rules to deter-
mine the number of instances of worker role A in your application.
There are no reactive rules in this simple scenario.

One is the lowest rank. You
should use it for all your
default rules. You should
always assign a rank to your
constraint rules so that it’s
clear which one should take
precedence.

http://www.microsoft.com/windowsazure/support/
http://www.microsoft.com/windowsazure/support/

38 chapter four

figure 2
Using multiple constraint rules and no reactive rules

The three constraint rules in effect in this scenario work as fol-
lows:

1.	 The first constraint rule is always active. It sets the maximum
and minimum number of instances for worker role A to two.
This rule has the lowest rank.

2.	 The second constraint rule is active between 8:00 AM and
10:00 AM every day. In the diagram, label A shows when this
rule became active on August 7, and label B shows when this
rule became inactive. It sets the maximum and minimum
number of instances for worker role A to four. It has the
highest rank of the three rules, so when it overlaps with any
other rules it takes precedence.

3.	 The third constraint rule is active every Friday (in the diagram,
12 August is a Friday, and labels C and D show when this rule
became active and inactive). It sets the maximum and mini-
mum number of instances for worker role A to three. It has a
lower rank than the second rule, so between 8:00 AM and
10:00 AM on Fridays, the second rule overrides this rule; in
the diagram, label E shows when this happened.

Figure 3 shows the effect of using multiple constraint rules with
different maximum and minimum values, but without any reactive
rules.

 39autoscaling and windows azure

figure 3
Using constraint rules with maximum and minimum values without reactive
rules

This scenario uses a number of different constraint rules with
different maximum and minimum values. You can see how the in-
stance count always remains between the minimum and maximum
limits.

The reconciliation algorithm that the Autoscaling Application
Block uses when it evaluates constraint rules works as follows:
•	 If the current instance count is less than the minimum instance

count specified by the constraint rules at the current time, then
increase the current instance count to the minimum value. This
occurs at label A on the diagram.

•	 If the current instance count is greater than the maximum
instance count specified by the constraint rules at the current
time, then decrease the current instance count to the maximum
value. This occurs at label B on the diagram.

•	 Otherwise, leave the current instance count unchanged. This
occurs at label C on the diagram.

Reactive Rules
It is not always possible to predict when demand will increase for your
application or when there will be temporary bursts of demand. The
Autoscaling Application Block also allows you to create reactive rules
that trigger a scaling action when an aggregate value derived from a
set of data points exceeds a certain threshold.

The Autoscaling Application Block can monitor the value of per-
formance counters, Windows Azure queue lengths, instance counts,
and any custom-defined business metrics to scale the application

40 chapter four

when those values exceed specified thresholds. The application block
refers to these values as operands, where an operand defines three
things:
•	 The counter or metric
•	 The aggregate function, such as average or maximum
•	 The time interval over which the application block calculates

the aggregate function
For example, the Autoscaling Application Block can monitor the

CPU usage of your web role instances. When the CPU usage perfor-
mance counter average for the last hour goes above a threshold of
80%, the rule will perform an action to add new web role instances to
handle this load, which should cause the average CPU usage levels to
drop (assuming the load does not increase significantly). It will con-
tinue to add web role instances until the average CPU usage falls be-
low the threshold. The reverse works as well. For example, if the aver-
age CPU usage over the last hour falls below a threshold of 40% then
the rule will perform an action to remove web role instances until the
average CPU usage is above the threshold value. Reactive rules can
adjust the role instance account by an absolute number or by a pro-
portion.

Typically, reactive rules are paired with one rule to scale up/out
and another to scale down/in.

Reactive rules use an expression to specify a condition to evaluate
to determine whether the rule should perform a scaling action. The
actions that a reactive rule can trigger include:
•	 Changing the instance count value of the rule’s target. The

action can increment or decrement the count by a number or by
a proportion.

•	 Changing the configuration of a hosted service. This action
provides new values for entries in the application’s ServiceCon-
figuration.cscfg file.

•	 Sending a notification to an operator.
•	 Switching to a different operating mode when you have config-

ured your application to use application throttling.
•	 Executing a custom action.

An action generates a notification if the action fails.

If your application uses multiple web and worker roles, you will
need to define an action for each web and worker role that you
want to scale. You can use scale groups to simplify this task.

Example reactive rules include:
•	 If the CPU utilization performance counter, averaged over the

last hour for worker role A (across all instances) is greater than
80%, then perform an action.

 41autoscaling and windows azure

•	 If the minimum length of a Windows Azure queue over the last
six hours was greater than 50, then perform an action.
Rules can have a simple Boolean expression that compares a single

value to a threshold, or a complex expression that includes a Boolean
combination of multiple comparisons based on multiple operands. An
example rule with a complex expression is:
•	 If CPU utilization averaged for the last hour was growing, and

the queue length remained above 120 for the last two hours,
then perform an action.
Figure 4 illustrates the behavior of the Autoscaling Application

Block when you have a reactive rule defined in addition to multiple
constraint rules. The scenario displayed in the diagram uses three
separate constraint rules to determine the minimum and maximum
number of instances of worker role A in your application.

figure 4
Constraint rules interacting with reactive rules

The three constraint rules that are in effect for worker role A are
as follows:

1.	 The first constraint rule is always active. It sets the minimum
number of instances for worker role A to two and the
maximum to five. It has the lowest ranking.

2.	 The second constraint rule is active between 8:00 AM and
10:00 AM every day (Label A on the diagram shows when this
rule becomes active for the first time). It sets the minimum
number of instances for worker role A to four and the
maximum to six. It has the highest ranking of the three rules,
so when it overlaps with any other rules it takes precedence.

42 chapter four

You should be careful
about assigning ranks
to your reactive rules.
It is better to rely on
the reconciliation
process to determine
which scaling action
should be performed.

3.	 The third constraint rule is active every Friday (in the diagram,
12 August is a Friday, Label B on the diagram shows when this
rule becomes active). It sets the minimum number of in-
stances for worker role A to three and the maximum to five.
It has a lower ranking than the second rule, so between 8:00
AM and 10:00 AM on Fridays, the second rule overrides this
rule.

In addition, there are two reactive rules that can adjust the in-
stance count of worker role A:
•	 If the minimum number of unprocessed documents during the

last hour was greater than 10, then increase the instance count
of worker role A by one.

•	 If the maximum number of unprocessed documents during the
last hour was less than 10, then decrease the instance count of
worker role A by one.
In the scenario shown in Figure 4, you can see how the constraint

rules always limit the number of instances, providing absolute floor
and ceiling values that cannot be crossed. The reactive rules can adjust
the number of role instances within these limits. In the diagram, labels
C and D show times when the first constraint rule enforced limits on
the number of instances that the reactive rule proposed. Labels E and
F show times when the second constraint rule enforced limits on the
number of instances that the reactive rule proposed; at these times,
the second constraint rule overrides the first constraint rule.

If there is no constraint rule active for a role when the rule
evaluation process runs, and a reactive rule tries to change the
number of role instances, then the Autoscaling Application Block
will log a message that it cannot perform any scaling actions on
the role. The block will not change the current number of role
instances.

Multiple reactive rules can trigger different, conflicting actions at
the same time. In this case, the Autoscaling Application Block can
reconcile the conflicting actions.

For more information about how the block reconciles conflicting
rules, see the topic “Understanding Rule Ranks and Reconciliation” on
MSDN.

Logging
Whether you use instance autoscaling, application throttling, or a
combination of the two approaches, the Autoscaling Application
Block can log information about its activities. For example, it can
write a log entry:

A rule can perform
one or more actions.

http://msdn.microsoft.com/en-us/library/hh680923(v=PandP.50).aspx

 43autoscaling and windows azure

•	 When it starts or stops new instances, and include information
about why the Autoscaling Application Block added this
instance.

•	 When the application switches between various modes of
operation, and include information about what triggered the
throttling behavior.
You can use this information to help analyze your Windows Azure

costs, and to identify predictable patterns in the utilization levels of
your application.

The Autoscaling Lifecycle
Figure 5 illustrates the lifecycle of the autoscaling process from the
perspective of operations personnel.

figure 5
The lifecycle of the autoscaling process

44 chapter four

The lifecycle of the autoscaling process consists of four stages
that operations staff can iterate over multiple times as they refine the
autoscaling behavior of your application.

Determine Requirements and Constraints
The first stage is to determine the requirements and constraints for
autoscaling behavior in your application. To determine the two types
of requirements, you must:
•	 Identify any predictable patterns of demand for your applica-

tion’s services.
•	 Specify how you want your application to respond to unpre-

dicted bursts and collapses in demand for its services.
The possible constraints you will face include:

•	 Budgetary constraints on the running costs of your Windows
Azure application.

•	 Any commitments to an SLA with your application’s users.

Specify Rules
Based on the requirements and constraints that you identified in the
previous step, you must formulate a set of rules to specify the auto-
scaling behavior of the application within your constraints. You can
use constraint rules to define the behavior of the application in re-
sponse to predictable changes in demand, and reactive rules to define
the behavior of the application in response to unpredictable changes
in demand.

Run the Application
After you have configured the rules, the Autoscaling Application
Block can evaluate the rules and execute the autoscaling actions in
your application as the application faces real changes in demand. The
Autoscaling Application Block will log the rule evaluation results and
the autoscaling actions that it performs.

Collect and Analyze the Results
You should regularly analyze the information that the Autoscaling
Application Block logs about its activities in order to evaluate how
well your rules are meeting your initial requirements and working
within the constraints. For example, you may discover that your rules
do not always enable your application to scale sufficiently to meet
demand or that the rules are preventing you from meeting your SLA
commitments in all circumstances. In these cases, you should re-
evaluate your requirements and constraints to ensure that they are
still valid and, if necessary, adjust your rules. You may be able to iden-
tify new, predictable usage patterns that will allow you to preemp-
tively scale your application rather than relying on reactive rules.

 45autoscaling and windows azure

You should continue to iterate over this process because usage
patterns for your application will change over time and the existing
set of rules may become sub-optimal for your requirements and con-
straints.

When Should You Use the Autoscaling
Application Block?

This section describes three scenarios in which you should consider
using the Autoscaling Application Block in your Windows Azure
solution.

You Want Your Application to Respond
Automatically to Changes in Demand

The Autoscaling Application Block helps you to manage two compet-
ing requirements in your Windows Azure applications. The first is to
maintain the performance levels of your application in the face of
changing levels of demand. If your application’s web or worker roles
experience changes in their workload over time, varying significantly
by the hour, the day, or the week, and you want your application to
respond to these changes in demand automatically, then the Autoscal-
ing Application Block can increase or decrease the number of role
instances automatically based on pre-configured rules.

New role instances can take at least 10 minutes to start up, so you
can also use the application throttling feature of the Autoscaling
Application Block when you need to respond quickly (within seconds
or minutes) to a burst in activity.

You Want to Manage the Costs Associated
with Running Your Application
The second, competing requirement is to minimize the running

costs of your Windows Azure application. Although additional web
and worker role instances will enable your application to maintain
response times for users and maintain throughput for background
tasks when there is a burst in activity, these additional role instances
cost money. Windows Azure bills for web and worker role instances
by the hour, and these compute costs are typically a large proportion
of the running costs of a Windows Azure application. For a more
detailed discussion of how you can estimate your Windows Azure
running costs, see the chapter “How Much Will It Cost?” in the book
“Moving Applications to the Cloud.”

The Autoscaling Application Block helps to manage costs by re-
moving unnecessary role instances and by allowing you to set maxi-
mum values for the number of role instances. However, there may be
circumstances in which your application sees an additional burst in
activity when it is already running the maximum configured number

To keep users using your
application, it must always
be responsive.

The profitability of
the application is
directly affected by
its running costs.

http://msdn.microsoft.com/en-us/library/ff803375.aspx

46 chapter four

of instances. In this case, your application can respond by using ap-
plication throttling. The throttling rules can define when your applica-
tion should switch to an operating mode that is less resource intensive
or disable non-critical functionality. In this way, the application can
maintain the responsiveness of its UI or the throughput of critical
processes without starting additional role instances.

You Have Predictable Times When Your
Application Requires Additional
Resources

The rules used by the Autoscaling Application Block allow you to
define when the number of role instances should increase or decrease.
When you know in advance that there will be a burst in demand, you
can start additional role instances before the burst takes place by
using autoscaling rules to define a timetable that specifies the number
of roles that should be available at particular times.

When Should You Not Use the
Autoscaling Application Block

There are some scenarios in which you should not use the Autoscaling
Application Block in your Windows Azure application.

Simple Applications
Autoscaling does not often add much value for relatively simple ap-
plications or applications that have a limited number of users. For
example, many small web applications never need more than two web
role instances, even during bursts of activity.

Adding the Autoscaling Application Block to your application
increases the complexity of your application. Therefore, you should
evaluate whether or not the benefits of adding autoscaling behavior
outweigh the additional complexity to the design of your application.

You can collect and analyze
historic data and use your
knowledge of external
factors that trigger changes
in demand to help predict
workloads.

You should consider designing your
application to be scalable, even if your
application does not require scalability
right now. Usually, you cannot make
an existing application scalable without
having to re-engineer it.

 47autoscaling and windows azure

Controlling Costs
If you want to treat some of the costs of your Windows Azure ap-
plication as fixed costs, then you may want to fix the number of role
instances in your application. This way, you can predict the exact cost
of this portion of your monthly Windows Azure bill. You cannot treat
all Windows Azure costs as fixed costs: for example, data transfer
costs and Windows Azure storage costs will always vary based on the
quantity of data you are transferring and storing.

Applications That Are Not Scalable
Autoscaling only makes sense for applications that you design to be
scalable. If your application is not horizontally scalable, because its
design is such that you cannot improve its performance by adding
additional instances, then you should not use the Autoscaling Applica-
tion Block to perform instance autoscaling. For example, a simple web
role may not be scalable because it uses a session implementation that
is not web farm friendly. For a discussion of session state in Windows
Azure applications, see Storing Session State in the book “Moving Ap-
plications to the Cloud, 2nd Edition.” For a discussion of some of the
design issues associated with scalable worker roles, see Scaling Appli-
cations by Using Worker Roles in the book “Developing Applications for
the Cloud, 2nd Edition.”

Using the Autoscaling Application Block
Using the Autoscaling Application Block includes tasks that

developers perform and tasks that IT pros perform. Figure 6 relates
the key tasks to the actions of the Autoscaling Application Block in
Windows Azure.

The Autoscaling Application Block
automates the scaling process for
applications that are already scalable.
Using the Autoscaling Application Block
does not automatically make your
application scalable.

http://go.microsoft.com/fwlink/?LinkID=234637
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://msdn.microsoft.com/en-us/library/ff728592.aspx
http://go.microsoft.com/fwlink/?LinkID=234638
http://go.microsoft.com/fwlink/?LinkID=234638
http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/ff966499.aspx

48 chapter four

figure 6
Using the
Autoscaling
Application
Block

 49autoscaling and windows azure

This section describes, at a high level, how to use the Autoscaling
Application Block. It is divided into the following main sub-sections.
The order of these sections reflects the order in which you would
typically perform the associated tasks. Developers will perform some
of these tasks and administrators will perform others. The description
of each task suggests who, in practice, is likely to perform each one.
•	 Adding the Autoscaling Application Block to your Visual

Studio Project. This section describes how you, as a developer,
can prepare your Microsoft Visual Studio® development system
solution to use the block.

•	 Hosting the autoscaling application block. This section
describes how you, as a developer, can host the Autoscaling
Application Block in your Windows Azure application.

•	 Changes to your Windows Azure application. This section
describes the changes that you need to make in your Windows
Azure application so that it works with the Autoscaling Applica-
tion Block.

•	 The service information. This section describes how you, as a
developer, define your application’s service information.

•	 Adding throttling behavior to your application. This section
describes how you, as a developer, can modify your application
so that it can be throttled by your autoscaling rules.

•	 The autoscaling rules. This section describes how you, as an
administrator, can define your autoscaling rules.

•	 Monitoring the Autoscaling Application Block. This section
describes how you, as an administrator, can monitor your
autoscaling rules and how to use the data that you collect.

•	 Advanced usage scenarios. This section describes some ad-
ditional scenarios, such as using scale groups and extending
the Autoscaling Application Block.

Adding the Autoscaling Application
Block to Your Visual Studio Project

As a developer, before you can write any code that uses the Autoscal-
ing Application Block, you must configure your Visual Studio project
with all of the necessary assemblies, references, and other resources
that you’ll need. For information about how you can use NuGet to
prepare your Visual Studio project to work with the Autoscaling
Application Block, see the topic “Adding the Autoscaling Application
Block to a Host” on MSDN.

You would typically perform
this task when you are
creating the host application
for the block and work with
the IT Pro to determine the
required functionality.

NuGet makes it very easy
for you to configure your
project with all of the
prerequisites for using the
Autoscaling Application
Block.

You can also download
the NuGet package, extract
the DLLs and add them to
your project manually, or
download the source code
for the block and build it
yourself.

http://msdn.microsoft.com/en-us/library/hh680920(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680920(v=pandp.50).aspx

50 chapter four

Hosting the Autoscaling Application
Block
You can host the Autoscaling Application Block in a Windows

Azure role or in an on-premises application such as a simple console
application or a Windows service. This section discusses some of the
reasons that you might choose one or the other of these approaches
and provides links to resources that explain how to write the code
that hosts the Autoscaling Application Block.

The Autoscaling Application Block enables you to add autoscaling
behavior to your Windows Azure applications, and as such, it must be
able to communicate with Windows Azure to make changes to the
number of role instances that make up your application. Your Win-
dows Azure application might be a simple application made up of a
small number of roles, all running in the same hosted service in the
same data center, or have hundreds of different roles running in mul-
tiple hosted services in multiple data centers. Whatever the structure
of your application and wherever you choose to host the Autoscaling
Application Block, it must be able to interact with your application by
using the Windows Azure Service Management API, and it must be
able to access diagnostic data such as performance counter values in
order to evaluate reactive rules.

If you host the Autoscaling Application Block in Windows Azure,
then you do not need to transfer any of the data that the application
block uses out of the cloud. However, you may need to transfer diag-
nostic data between data centers if you host parts of your application
in other geographical locations. The advantages of hosting the Auto-
scaling Application Block in Windows Azure are the same as for host-
ing any application in the cloud: reliability and scalability. However,
you will need to pay to host the role that contains the application
block in Windows Azure. You could host the application block in a
worker role that also performs other tasks, but from the perspective
of manageability and security you should host the application block
in its own worker role or even in its own hosted service. For informa-
tion about how to host the Autoscaling Application Block in Win-
dows Azure, see the topic “Hosting the Autoscaling Application Block
in a Worker Role" on MSDN.

You must decide
where you will host
the block: either in
Windows Azure or in
an on-premises
application.

The Autoscaling Application
Block is designed to work
with very large Windows
Azure applications with
hundreds of different roles.

Using the Autoscaling Application Block in code is very
similar to using the other Enterprise Library application
blocks. The topic “Using Enterprise Library in Applications”
in the main Enterprise Library documentation describes
how to reference the Enterprise Library assemblies, how
Enterprise Library handles dependencies, and how to
work with Enterprise Library objects.

http://msdn.microsoft.com/en-us/library/hh680914(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680914(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/ff664560(PandP.50).aspx

 51autoscaling and windows azure

If you choose to host the application block in Windows Azure,
and plan to scale the role instance that hosts it for added reliability,
you must make sure that you configure the application block to use a
blob execution lease in the advanced configuration settings. This set-
ting ensures that only a single instance of the application block is able
to evaluate rules at any point in time. For information about how to
make this configuration setting, see the topic “Entering Configuration
Information” on MSDN.

The default configuration settings assume that you will have a
single instance of the worker role that hosts the application block.
You must change this if you plan to scale the role that hosts the
Autoscaling Application Block.

Hosting the application block on-premises means that the block
must remotely access the diagnostic data from your Windows Azure
application that it needs for reactive rules. An advantage of hosting
the application block locally is that it may simplify integration with
other tools and processes that run on premises. It may also be conve-
nient to have the Autoscaling Application Block running locally when
you are developing and testing your Windows Azure application. For
information about how to host the Autoscaling Application Block in
an on-premises application, see the topic “Hosting the Autoscaling
Application Block in an On-Premises Application” on MSDN.

Changes to Your Windows Azure
Application

The Autoscaling Application Block is designed to minimize the
changes you need to make to your Windows Azure application. The
application block can add and remove role instances from your ap-
plication by using the Windows Azure Service Management API. This
does not require any changes in your application.

However, reactive rules can use performance counter data to
determine whether the application block should change the current
number of role instances. If you are using performance counters in
your reactive rules, then you must take steps to ensure that your ap-
plication saves the performance counter data to Windows Azure
storage where the application block’s data collection process can ac-
cess it.

For more information about the code changes you must make in
your Windows Azure application to enable it to save performance
counter data, see the topic “Collecting Performance Counter Data” on
MSDN.

You can also use the Windows Azure Diagnostics Configuration
File (diagnostics.wadcfg) to configure your performance counters.
For more details, see “How to Use the Windows Azure Diagnostics
Configuration File” on MSDN.

You can also instrument
your Windows Azure
application with custom
performance counters to
use in your reactive rules.

http://msdn.microsoft.com/en-us/library/hh680915(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680915(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680882(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680882(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680886(v=pandp.50).aspx
http://go.microsoft.com/fwlink/?LinkID=234617
http://go.microsoft.com/fwlink/?LinkID=234617

52 chapter four

The Service Information
Before the Autoscaling Application Block can perform any auto-

scaling operations on your Windows Azure application, you need to
configure the service information that describes your Windows Azure
application. By default, this service information is stored in an XML
document in a Windows Azure blob that is accessible to the applica-
tion block.

The service information includes the following information about
the Windows Azure features that make up your application.
•	 For each Windows Azure subscription that contains resources

that you want to be able to scale automatically, the service
information contains the subscription ID, certificate thumbprint,
and details of where the application block can find the manage-
ment certificate it needs to be able to issue scaling requests.

•	 For each Windows Azure hosted service that contains resources
that you want to be able to scale automatically, the service
information contains the names of the deployment slots where
the application to be scaled is running.

•	 The application block can only use the Windows Azure roles
that are listed in the service information as sources of perfor-
mance counter data or as targets for autoscaling. For each role
listed in the service information, the service information identi-
fies the storage account where Windows Azure saves the role’s
diagnostic data. The application block reads the performance
counter data that the reactive rules use from this storage
account.

•	 The names of any queues whose length the application block
monitors.

•	 The definitions of the scale groups. These are described later in
this chapter.
The Autoscaling Application Block rules can only operate on

targets (roles and scale groups) that are identified in the application
block’s service information. For further information see the topic
“Storing Your Service Information Data” on MSDN.

The service information also enables you to control how aggres-
sively you want to autoscale your Windows Azure application by
specifying cool-down periods. A cool-down period is the period after a
scaling operation has taken place during which the application block
will not perform any further scaling operations. A cool-down period
is enabled via the optimizing stabilizer feature of the application
block. You can define different cool-down periods for scale-up and
scale-down operations, and specify default cool-down periods that
individual roles can override. The shorter the cool-down period, the

The service information
defines the aspects of your
Windows Azure application
that are relevant to
the Autoscaling
Application Block.

http://msdn.microsoft.com/en-us/library/hh680878(v=PandP.50).aspx

 53autoscaling and windows azure

more aggressive the application block will be in issuing scaling re-
quests. However, by setting short cool-down periods for both scale-
up and scale-down operations, you risk introducing an oscillation
whereby the application block repeatedly scales up and then scales
down a role. If not specified, the application block uses a default of
20 minutes for the cool-down period.

The service information also enables you to configure when, dur-
ing the hour, you want to allow scaling operations to take place. Be-
cause Windows Azure bills by the clock hour, you may want to use
role instances for as long as possible within an hour. To achieve this,
you can specify that scale up operations can only take place during
the first X minutes of the hour and that scale down operations can
only take place during the last Y minutes of the hour.

You need to allow enough time for the scale down operations to
complete before the end of the hour. Otherwise, you will be billed
for the next hour.

With the exception of scale groups, which are a convenience
when it comes to authoring rules, the developers of the application
typically define the service information; they know about the struc-
ture of the application, and what can and cannot be safely scaled.

Using the Autoscaling Application Block does not automatically
make your Windows Azure roles scalable. Although Windows Azure
provides the infrastructure that enables your applications to scale,
you are responsible for ensuring that your web and worker roles will
run correctly when there is more than one instance of the role. For
example, it may not be possible to parallelize some algorithms.

See the section “The Map Reduce Algorithm” in the book
Developing Applications for the Cloud for information about a
technique for parallelizing large calculations across multiple role
instances.

For web roles to be scalable, they should be “web farm friendly.”
In particular, if they make use of session state, then the session state
provider either shares or synchronizes your session state data across
your role instances. In Windows Azure, you can use the session state
provider that stores session state in the shared cache. For more infor-
mation, see “Session State Provider” on MSDN.

To minimize the risk of disclosing sensitive information, you should
encrypt the contents of the service information store. For more
information, see the topic “Encrypting the Rules Store and the
Service Information Store” on MSDN.

There is no point in setting
cool-down periods to less
than ten minutes. Windows
Azure can often take ten
minutes to complete a
scaling operation on a role,
during which time it will not
accept any additional scaling
requests for that role
anyway.

You should ensure
that your service
information data only
references roles that
are scalable.

http://msdn.microsoft.com/en-us/library/ff966483.aspx#sec18
http://msdn.microsoft.com/en-us/library/gg185668.aspx
http://msdn.microsoft.com/en-us/library/hh680910(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680910(v=PandP.50).aspx

54 chapter four

Adding Throttling Behavior
to Your Application

The Autoscaling Application Block enables you to use two different
autoscaling mechanisms in your Windows Azure applications. You can
either use autoscaling rules to change the number of role instances or
use autoscaling rules to modify the behavior of your application,
typically by throttling the application so that it uses fewer resources.
Examples of throttling behavior include temporarily disabling some
non-essential features in your application, and switching to a less re-
source-intensive version of the UI.

There are two scenarios in which you might decide to use throt-
tling.
•	 You can use throttling instead of instance autoscaling for some

or all of the roles in your application. You might chose to do this
if your role does not support running with multiple instances or
because you can achieve better scaling results by changing the
behavior of the role rather than adding or removing new
instances.

•	 You want your application to respond almost immediately to a
burst in demand. With throttling, you can change the behavior
of the application as soon as the application block executes a
reactive rule action without having to wait for Windows Azure
to start a new role instance. Depending on the size and com-
plexity of your application, throttling may not take effect faster
than instance scaling.
To add throttling behavior to your Windows Azure application

you must modify your application to respond to requests for it. For
more information about how your Windows Azure application can
detect a request for throttling behavior, see the topic “Implementing
Throttling Behavior” on MSDN.

You must also create a set of reactive rules that use the change-
Setting action to notify your application that it should enable or
disable some throttling behavior. For information about how to define
the throttling autoscaling rules, see the topic “Defining Throttling
Autoscaling Rules” on MSDN.

For a complete example of how the Tailspin Surveys application
uses throttling behavior, see Chapter 5, “Making Tailspin Surveys More
Elastic” in this guide.

Using Instance Autoscaling and Throttling Together
You can use instance autoscaling exclusively or throttling exclusively
in your Windows Azure application, or use them together.

If you decide to use them together, you need to take into account
how they will interact. You should be aware of a number of differ-
ences between them when you are creating your autoscaling rules.

While using instance
autoscaling requires minimal
changes to your application
because the Autoscaling
Application Block scales
your application by adding
or removing role instances,
using throttling will require
more extensive changes to
your application.

http://msdn.microsoft.com/en-us/library/hh680896(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680896(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680908(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680908(v=PandP.50).aspx

 55autoscaling and windows azure

•	 Instance autoscaling rules can take up to ten minutes to have an
effect because of the time taken by Windows Azure to launch
new role instances. Throttling autoscaling rules can affect the
behavior of your application almost immediately.

•	 Instance autoscaling rules are limited by the configurable
cool-down periods that set a minimum time before the applica-
tion block can scale the same role again; there are no cool-down
periods for throttling autoscaling rules.

•	 Instance autoscaling rules are always limited by constraint rules.
Throttling autoscaling rules are not limited by constraint rules.
A single reactive rule can have an action that performs instance

autoscaling and an action that performs throttling.
You can use rule ranks to control the precedence of reactive rules

that perform instance autoscaling and reactive rules that perform
throttling.

The Autoscaling Rules
Autoscaling actions take place in response to rules that define when
the Autoscaling Application Block should scale roles up or down. By
default, these rules are stored in an XML document in a Windows
Azure blob that is accessible to the application block.

The Autoscaling Application Block supports two types of rules
that define autoscaling behavior: constraint rules and reactive rules.
Typically, the administrators of the application are responsible for
creating, monitoring, and maintaining these rules. They can perform
these tasks by editing the XML document that contains the rules, or
through a user interface (UI) created by the developers of the applica-
tion.

When you are creating your autoscaling rules, you can only create
rules for the roles that the developers listed in the service informa-
tion. You should plan your rules in three stages:

1.	 Design the default (or “baseline”) constraint rules.
2.	 Design any additional constraint rules.
3.	 Design your reactive rules.
You should create a default constraint rule for every role that is

listed in the service information. A default rule does not have a time-
table, so it is always active; it has a rank of zero, so it can be overridden
by any other constraint rules; it should have minimum and maximum
role instance values that define the default values you want when no
other constraint rules are active. These default rules should ensure
that you always have the minimum number of role instances that you
need to meet your SLA commitments, and that you don’t go over
budget by running too many role instances.

The next chapter
describes a Windows
Azure application
with an example of
a web-based UI for
managing rules.

Default rules guard
your SLAs!

56 chapter four

The application block will log an error if a reactive rule attempts
to scale a target that does not have a constraint rule. In this
scenario, the application block will not perform the scaling action
on the target.

After you have created your default rules, you can define any ad-
ditional constraint rules that handle expected periods of above or
below normal workload for your application. These additional con-
straint rules have timetables that specify when the rule is active, a
rank that is greater than one to ensure that they override the default
constraint rules, and appropriate values for the maximum and mini-
mum role instance counts. For example, your application might expe-
rience increased workloads at 9:00 AM to 10:00 AM every morning,
or on the last Friday of every month, or decreased workloads between
1:00 PM and 5:00 PM every day, or during the month of August.

If you want to specify a fixed number of instances for a role, you
can use a constraint rule with the maximum and minimum values set
to the same number. In this case, reactive rules will not have any effect
on the number of role instances.

The constraint rules enable you to plan for expected changes in
workload.

The reactive rules enable you to plan for unexpected changes in
your application’s workload. A reactive rule works by monitoring an
aggregate value derived from a set of data points such as performance
counter values, and then performing a scaling operation when the
aggregate value reaches a threshold. The challenge with reactive rules
is knowing which aggregates and data points, or combination of ag-
gregates and data points, you should use in your reactive rules. For

Default rules guard your wallet!

You may already have a good idea about
when your application’s workload changes
based on your knowledge and experience
of the application and your organization.
However, you will gain a deeper insight by
monitoring and analyzing your application.

You must monitor and analyze the
behavior of your application to understand
what data points and aggregates, or
combination of data points and aggregates,
work best as a proxy measure of your
application’s performance. You may need
multiple rules because different aspects
of your application may have different
performance characteristics.

 57autoscaling and windows azure

example, if you have a reactive rule that monitors CPU utilization, but
your application is I/O bound, the reactive rule won’t trigger a scaling
action at the correct time. Another example is if you have a reactive
rule that monitors the length of a Windows Azure queue. If it doesn’t
matter to the functionality of the application if the queue is emptied
later, you will be wasting resources if you scale up to clear the queue
earlier than is necessary.

If performance counters or Windows Azure queue lengths don’t
work well as ways of measuring your application’s performance, the
application’s developers can instrument the application to generate
custom business metrics to use in rules.

If your reactive rules use performance counter data from your
Windows Azure application, you must make sure that your applica-
tion transfers the performance counter data that the rules consume
to Windows Azure Diagnostics storage. For an example of how to do
this, see the section “Collecting Performance Counter Data from
Tailspin Surveys” in Chapter 5, “Making Tailspin Surveys More Elastic”
of this guide.

For information about defining rules, see the section “Rules and
Actions” earlier in this chapter.

To minimize the risk of disclosing sensitive information, you should
encrypt the contents of the rules store. For more information, see
the topic “Encrypting the Rules Store and the Service
Information Store” on MSDN.

Implementing Schedule-based Autoscaling
Without Reactive Rules

In some scenarios, you may want to use a schedule to precisely control
the number of role instances at different times. You may want to do
this because you want your running costs to be more predictable, or
because you do not anticipate any unexpected bursts in demand for
your application. You can achieve this goal by using only constraint
rules and not reactive rules. Furthermore, your constraint rules should
each have the maximum instance count equal to the minimum in-
stance count.

The following snippet shows a simple set of rules that implement
schedule-based autoscaling without using reactive rules. The default
constraint rule sets the role instance count to two, the peak-time rule
sets the role instance count to four.

http://msdn.microsoft.com/en-us/library/hh680910(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680910(v=PandP.50).aspx

58 chapter four

XML
<rules
 xmlns=http://schemas.microsoft.com/practices/2011/entlib/
autoscaling/rules
 enabled="true">
 <constraintRules>
 <rule name="Default" description="Always active"
 enabled="true" rank="1">
 <actions>
 <range min="2" max="2" target="RoleA"/>
 </actions>
 </rule>

 <rule name="Peak" description="Active at peak times"
 enabled="true" rank="100">
 <actions>
 <range min="4" max="4" target="RoleA"/>
 </actions>
 <timetable startTime="08:00:00" duration="02:00:00">
 <daily/>
 </timetable>
 </rule>
 </constraintRules>

 <reactiveRules/>

 <operands/>
</rules>

Monitoring the Autoscaling
Application Block

Over time, usage patterns for your application will change. The overall
number of users will go up or down, people will start to use the ap-
plication at different times, the application may gain new features,
and people will use some parts of the application less and some parts
more. As a consequence, your constraint and reactive rules may no
longer deliver the optimal balance of performance and cost.

The Autoscaling Application Block logs detailed information
about the behavior of your rules so you can analyze which rules were
triggered and at what times. This information, in combination with
other performance monitoring data that you collect, will help you
analyze the effectiveness of your rule set and determine what chang-
es you should make to re-optimize the rules.

The Autoscaling
Application Block can
use the Enterprise
Library Logging Block
logger, System.
Diagnostics logging,
or a custom logger.

 59autoscaling and windows azure

How frequently you analyze your rule behavior depends on how
dynamic the environment is within which your application operates.

For information about the logging data that the application block
generates, see the topic “Autoscaling Application Block Logging” on
MSDN.

Figure 7 shows the data sources you may want to use when you
are analyzing the behavior of the Autoscaling Application Block and
your application.

figure 7
Monitoring your autoscaling behavior

The application block provides interfaces that enable you to read
its configuration information, the autoscaling rules, and the service
information from the stores. You can also access the data points col-
lected by the application block, such as performance counters and
queue lengths that it uses when it evaluates the reactive rules. The
application block also provides some methods that help you read and
parse log messages that it has generated and written to the Windows
Azure Diagnostics log table using the system diagnostics logging
infrastructure.

Keeping your
autoscaling rules
optimized for your
specific requirements
is an ongoing task
that you must plan
for.

http://msdn.microsoft.com/en-us/library/hh680883(v=pandp.50).aspx

60 chapter four

For more information about reading from the rules store, see the
IRulesStore interface in the API documentation.

For more information about reading from the service information
store, see the IServiceInformationStore Interface in the API docu-
mentation.

For more information about reading from the rules store, see the
IDataPointsStore Interface in the API documentation.

For more information about reading and parsing the Autoscaling
Application Block log messages, see the topic “Reading the Autoscaling
Application Block Log Messages.”

For a complete example of using the different data sources to
visualize the Autoscaling Application Block activities, see the section
“Visualizing the Autoscaling Actions” in Chapter 5, “Making Tailspin
Surveys More Elastic.”

Advanced Usage Scenarios
This section provides guidance about when you should use some of
the advanced features of the Autoscaling Application Block.

Scale Groups
In an application with many web and worker roles, you may find it
difficult to create and manage the large number of rules you need to
define the autoscaling behavior in your application. In this scenario,
scale groups provide a convenient way to define rules that can act on
multiple roles at once. You should define the scale groups you need
before you start creating rules.

To define a scale group, you must identify the roles that will make
up the scale group, and assign each role type in the scale group a ratio.
The block uses these ratios to calculate the number of instances of
each member of the scale group when it performs a scaling action.
The following table shows a small example scale group; in practice,
scale groups are likely to consist of many more targets.

Target Ratio

Target A (Worker role A in Service Host A) 2

Target B (Worker role A in Service Host B) 1

Target C (Web role A in Service Host A) 3

A scale group can include targets that refer to roles in different
hosted services.

The application block does not use transactions to perform op-
erations on the members of a scale group and scale groups do not
guarantee to preserve the ratios between the role instances. For ex-

Scale groups are a
convenience. They
help to minimize the
number of rules you
need to create and
manage.

http://go.microsoft.com/fwlink/?LinkID=234680
http://go.microsoft.com/fwlink/?LinkID=234681
http://go.microsoft.com/fwlink/?LinkID=234682
http://msdn.microsoft.com/en-us/library/hh680909(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680909(v=PandP.50).aspx

 61autoscaling and windows azure

ample, a constraint rule may limit the number of instances suggested
by a reactive rule for some roles in a scale group, or an operator may
manually change the number of instances of one or more roles inde-
pendently of your autoscaling rules.

A reactive rule can use a scale group as its target. The following
table shows the effect of scaling the scale group by an increment of
two using the ratios shown in the previous table.

Target Initial instance count Instance count after scaling

Target A 4 8

Target B 2 4

Target C 6 12

The result is calculated as follows:
(Initial instance count) + (Increment * Ratio)

The following table shows the effect of a reactive rule scaling the
scale group by 50%.

Target Initial instance count Instance count after scaling

Target A 4 8

Target B 2 3

Target C 6 15

The result is calculated as follows:
(Initial instance count)
+
(Increment * Ratio * Initial instance count)

You can also use scale groups when you specify constraint rules.
A constraint rule uses the ratios to determine the maximum and
minimum values of the role instance counts. An example constraint
rule specifies a maximum count of five and a minimum count of two.
The following table shows the maximum and minimum instance count
values of the individual roles that make up our example scale group.

Target Minimum instance count Maximum instance count

Target A 4 10

Target B 2 5

Target C 6 15

Using Different Ratios at Different Times
You can use multiple scale groups with the same members to ap-

ply different ratios at different times. For example, you could define
the two scale groups shown in the following tables:

62 chapter four

Scale Group A

Target Ratio

Target A (Worker role A in Service Host A) 2

Target B (Worker role A in Service Host B) 1

Target C (Web role A in Service Host A) 3

Scale Group B
Target Ratio

Target A (Worker role A in Service Host A) 3

Target B (Worker role A in Service Host B) 1

Target C (Web role A in Service Host A) 1

You could then define two rules, as shown in the following table:

Rule name Timetable Rank Target

Default rule Always active 1 Scale Group A

Batch processing
rule

Sundays between
2:00 and 4:00

20 Scale Group B

Both rules target the same roles, but apply different ratios. The
batch processing constraint rule will override the default constraint
rule on Sundays between 2:00 and 4:00 in the morning and use the
ratios defined for scale group B.

Using Notifications
You may decide that you want to preview any scaling operations

suggested by the Autoscaling Application Block before the applica-
tion block sends them to Windows Azure. This may be useful when
you are testing the block and want to double check the scaling op-
erations before they happen, or if you want to use the operator’s
knowledge of the application to refine your autoscaling rules and
“tweak” the scaling actions.

The application block can send notifications and performs scaling
actions at the same time so that operators are notified of the
scaling operations that the application block performs.

You can configure the application block to send an email message
to one or more operators/administrators. The email message provides
full details of all of the scaling operations that the application block
suggested based on the current set of autoscaling rules.

For more information about how to configure notifications, see
the topic “Using Notifications and Manual Scaling” on MSDN.

Don’t make things too
complicated by putting
a role into too many
scale groups. It will make
it more difficult for you
to understand why the
Autoscaling Application
Block has set a particular
instance count value.

You can use
notifications while
you are evaluating or
testing the block. The
notifications can tell
you what operations
the block would
perform given the
current set of rules.

http://msdn.microsoft.com/en-us/library/hh680885(v=PandP.50).aspx

 63autoscaling and windows azure

Integrating with the Application Lifecycle
When you deploy an application to Windows Azure, you can

deploy to either the staging or the production deployment slot. Typi-
cally, you deploy to the staging environment first, where you can
perform any final tests before promoting the contents of the staging
deployment to the production environment.

If you are testing your autoscaling behavior, you will need to have
separate service information definitions and rules for each slot or
modify the service information definition when you promote from
staging to production.

The following code snippet from a service information definition
file shows how the roles and scale groups are defined for the different
deployment slots.

XML
<?xml version="1.0" encoding="utf-8"?>
<serviceModel ... >
 <subscriptions>
 <subscription name="Autoscaling Sample" ...>
 <services>
 <service dnsPrefix="stagingautoscalingservice" slot="Staging">
 <roles>
 <role alias="Staging.AutoScaling.WebApp"
 roleName="AutoScaling.WebApp" ... />
 </roles>
 </service>
 <service dnsPrefix="productionautoscalingservice" slot="Production">
 <roles>
 <role alias="Production.AutoScaling.WebApp"
 roleName="AutoScaling.WebApp" ... />
 </roles>
 </service>
 <service dnsPrefix="stagingscalegroup" slot="Staging">
 <roles>
 <role alias="Staging.Autoscaling.Scalegroup.Billing"
 roleName="Autoscaling.Scalegroup.Billing" ... />
 <role alias="Staging.Autoscaling.Scalegroup.BillProcessor"
 roleName="Autoscaling.Scalegroup.BillProcessor" ... />
 <role alias="Staging.Autoscaling.Scalegroup.InvoiceReporting"
 roleName="Autoscaling.Scalegroup.InvoiceReporting" ... />
 </roles>
 </service>
 <service dnsPrefix="productionscalegroup" slot="Production">
 <roles>

64 chapter four

 <role alias="Production.Autoscaling.Scalegroup.Billing"
 roleName="Autoscaling.Scalegroup.Billing" ... />
 <role alias="Production.Autoscaling.Scalegroup.BillProcessor"
 roleName="Autoscaling.Scalegroup.BillProcessor" ... />
 <role alias="Production.Autoscaling.Scalegroup.InvoiceReporting"
 roleName="Autoscaling.Scalegroup.InvoiceReporting" ... />
 </roles>
 </service>
 </services>
 <storageAccounts>
 ...
 </storageAccounts>
 </subscription>
 </subscriptions>

 <scaleGroups>
 <scaleGroup name="StagingScaleGroupA">
 <roles>
 <role roleAlias="Staging.Autoscaling.Scalegroup.Billing" ... />
 <role roleAlias="Staging.Autoscaling.Scalegroup.BillProcessor" ... />
 <role roleAlias="Staging.Autoscaling.Scalegroup.InvoiceReporting" ... />
 </roles>
 </scaleGroup>
 <scaleGroup name="ProductionScaleGroupA">
 <roles>
 <role roleAlias="Production.Autoscaling.Scalegroup.Billing" ... />
 <role roleAlias="Production.Autoscaling.Scalegroup.BillProcessor" ... />
 <role roleAlias="Production.Autoscaling.Scalegroup.InvoiceReporting" .../>
 </roles>
 </scaleGroup>
 </scaleGroups>
</serviceModel>

All role aliases and scale group
names must be unique within
the service information.

 65autoscaling and windows azure

Extending the Autoscaling Application Block
In Enterprise Library, pretty much everything is extensible. The Auto-
scaling Application Block is no exception. It offers five key extension
points if you want to extend or modify its functionality.

For more information, see the topic “Extending and Modifying the
Autoscaling Application Block” on MSDN.

For more information, see the “Extensibility Hands-on Labs for
Microsoft Enterprise Library 5.0.”

Custom Actions
If you need to add a new action to the existing scaling and throttling
actions, you can create a custom action. There are three steps to cre-
ating a custom action.

1.	 Create code that implements the action.
2.	 Create code that can deserialize your custom action from the

rules store. If you are using the built-in rules store, this will
require deserialization from XML.

3.	 Configure the application block to use the custom action.
For more information about custom actions, see the topic “Creat-

ing a Custom Action” on MSDN.
For an example of a custom action, see Chapter 5, “Making Tail-

spin Surveys More Elastic.”

Custom Operands
In a reactive rule, an operand defines an aggregate value calculated
from data points that the application block collects. If you need to
add a new operand to the existing performance counter and queue
length operands, you can create a custom operand. There are three
steps to creating a custom operand.

1.	 Create code that implements a custom data collector.
2.	 Create code that can deserialize your custom operand from

the rules store. If you are using the built-in rules store, this
will require deserialization from XML.

3.	 Configure the application block to use the custom operand.
For more information about custom operands, see the topic “Cre-

ating a Custom Operand” on MSDN.
For an example of a custom operand, see Chapter 5, “Making

Tailspin Surveys More Elastic.”

You can also download the
source code and make any
changes you want. The
license permits this.

By using custom operands,
you can use business
metrics in your rule
definitions.

http://msdn.microsoft.com/en-us/library/hh680889(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680889(v=PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkId=209184
http://go.microsoft.com/fwlink/?LinkId=209184
http://msdn.microsoft.com/en-us/library/hh680921(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680921(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680912(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680912(v=PandP.50).aspx

66 chapter four

Custom Stores
The Autoscaling Application Block uses two stores, one for rules, and
one for service information. For each of these stores, the application
block includes two implementations: storing the data as XML in a
Windows Azure blob or storing the data as XML in a file on the local
file system. The first is used when you host the application block in a
Windows Azure role, the second for when you host it in an on-
premises application.

If you need to be able to manipulate your rules or service informa-
tion in a different tool, you could replace these implementations with
stores that store the data in a different format and in a different loca-
tion; for example, JSON in a local file or in a SQL Server database.

For more information about creating a custom rules store, see the
topic “Creating a Custom Rules Store” on MSDN.

For more information about creating a custom service informa-
tion store, see the topic “Creating a Custom Service Information Store”
on MSDN.

Custom Logging
The Autoscaling Application Block can use the logger in the System.
Diagnostics namespace or the Enterprise Library Logging Application
Block to log details of the autoscaling activities it performs.

If you want to use a different logging infrastructure, you can im-
plement a custom logger for the application block. This may be useful
if you want to integrate with your existing logging infrastructure to
keep all your logs in a single location.

For more information about creating a custom logger, see the
topic “Creating a Custom Logger” on MSDN.

Using the WASABiCmdlets
You can use the WASABiCmdlets Windows PowerShell® Cmdlets to
perform operations on the Autoscaling Application Block from a
Windows PowerShell script. With the WASABiCmdlets, you can en-
able and disable rules and rule evaluation, modify rule ranks, adjust the
behavior of the stabilizer, and more.

In combination with the Windows Azure PowerShell Cmdlets,
and System Center Operations Manager (SCOM) or other manage-
ability tools, you can implement a powerful custom autoscaling solu-
tion.

For more information about the WASABiCmdlets, see the topic
“Using the WASABiCmdlets Windows PowerShell Cmdlets” on MSDN.

For more information about the Windows Azure PowerShell
Cmdlets, see “Windows Azure PowerShell Cmdlets” on CodePlex.

For more information about SCOM, see “System Center Opera-
tions Manager” on TechNet.

Using SQL Server as
a rules store could be
useful if your
application requires a
large number of rules.

http://msdn.microsoft.com/en-us/library/hh680933(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680884(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680926(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680938(v=PandP.50).aspx
http://wappowershell.codeplex.com/
http://technet.microsoft.com/en-us/systemcenter/om/default.aspx
http://technet.microsoft.com/en-us/systemcenter/om/default.aspx

 67autoscaling and windows azure

Sample Configuration Settings
The Autoscaling Application Block has a large number of configu-

ration settings that you can use to control how it performs autoscal-
ing for your application. This section describes some sample configu-
rations to illustrate how you can configure the application block to
address specific requirements. These illustrations are only guidelines:
you should analyze your own requirements and the behavior of your
Windows Azure application to determine the optimal configuration
settings for your application.

These sample configurations refer to the Autoscaling Application
Block configuration settings and to the autoscaling rules.

For more information about configuring the Autoscaling Applica-
tion block, see the topic “Entering Configuration Information” on
MSDN.

For more information about writing autoscaling rules, see the top-
ics “Defining Constraint Rules” and “Defining Reactive Rules” on MSDN.

Determining the optimum set of timing values for a solution is
usually an iterative process. During those iterations, you should take
the timing values shown in the following table into consideration. The
table shows the default values for the key configuration settings.

Configuration item Location Default value

Instance count collection
interval

Hardcoded Two minutes

Performance counter
collection interval

Hardcoded Two minutes

Queue length collection
interval

Hardcoded Two minutes

Rule evaluation interval Configuration file 4 minutes

Tracking interval Configuration file 5 minutes

Rules store monitoring
interval: specifies how
often the block checks
for changes to the rules

Configuration file 30 seconds

Service information store
monitoring interval:
specifies how often the
block checks for changes
to the service informa-
tion

Configuration file 30 seconds

Periods specified by
constraint rules

Rules store None

Operand timespan used
to calculate aggregate
values

Rules store None

http://msdn.microsoft.com/en-us/library/hh680915(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680917(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680897(v=PandP.50).aspx

68 chapter four

Cool-down periods
(scaling up and down)
used by the stabilizer

Service information store 20 minutes

Periods at the start and
end of the hour when
scaling operations do not
occur

Service information store None

Windows Azure related
timings such as WAD
transfer rate and
performance counter
sampling rates.

Windows Azure
configuration or
application code

None

Figure 8 illustrates the relationships between some of the timing
configuration settings in the previous table.

figure 8
Timing relationships

The following list explains what is happening at each point on the
diagram:

1.	 Your Windows Azure application captures performance
monitoring data. You typically configure these counters
either in the OnStart method of your Windows Azure roles,
or through Windows Azure configuration. This data is
captured in memory.

2.	 Your Windows Azure application saves the performance
monitoring data to the Windows Azure diagnostics (WAD)

 69autoscaling and windows azure

tables. You typically configure transfer periods either in the
OnStart method of your Windows Azure roles, or through
Windows Azure configuration.

3.	 The Autoscaling Application Block collects performance
counter data from the Windows Azure diagnostics tables and
saves it in the data points store. This happens every two
minutes. This value is hardcoded in the application block.

4.	 The Autoscaling Application Block collects instance count,
queue length, and any custom metrics data from your Win-
dows Azure application and saves it in the data points store.
This happens every two minutes. This value is hardcoded in
the application block.

5.	 The rules evaluator runs and identifies the autoscaling rules
that apply at the current point in time. The frequency at
which the rules evaluator runs is specified in the configura-
tion file. The default value is four minutes.

6.	 The rules evaluator retrieves the data points that it needs
from the data points store. The amount of data for each rule
is determined by the time span of the operand associated
with the rule. For example, if the operand specifies an average
over ten minutes, the rules evaluator retrieves data from the
last ten minutes from the data points store.

7.	 The stabilizer may prevent certain scaling operations from
happening. For example, the stabilizer may specify cool-down
periods after the application block has performed a scaling
operation or limit scaling operations to certain periods in the
hour.

The following sections suggest some configuration settings for
specific scenarios.

Average Rule Evaluation Period
You have a web application that gets busy at some times that are

hard to predict. If you begin to see an increase in the number of re-
jected web requests over the past five minutes, you want to take ac-
tion now, in order to ensure that within the next 20 minutes you will
have enough resources available to handle the increase in the number
of requests. You are willing to accept that some requests may con-
tinue to be rejected for the next 20 minutes.

You also have a predictable usage pattern, so you will also use
constraint rules to ensure that you reserve enough instances at the
times when you know there will be a higher number of requests.

For Windows Azure
infrastructure-related
timings such as WAD
transfer periods and
performance counter
sampling rates you need to
determine timings for your
application scenario. Don’t
assume that a one minute
transfer period is best for all
scenarios.

Remember that Windows
Azure takes time to start up
new role instances, so in this
scenario you must expect
some requests to be
rejected while this is
happening.	

70 chapter four

The following table shows some sample configuration values for
this scenario.

Configuration item Default value

Rule evaluation interval Five minutes

Tracking interval Five minutes

Instance count collection interval Two minutes (hardcoded)

Performance counter collection interval Two minutes (hardcoded)

Queue length collection interval Two minutes (hardcoded)

Cool-down period (both for scaling up and down) 20 minutes

Operand: ASP.NET application restarts 30 minutes

Operand: ASP.NET Requests queued 15 minutes

Operand: ASP.NET requests rejected 5 minutes

Long Rule Evaluation Period
Typically, your application has a very stable and constant level of de-
mand, but it does occasionally encounter moderate increases in usage.
Therefore, you decide to evaluate your autoscaling rules every 30
minutes and look for higher than average CPU utilization. You also
have a scale-down rule that runs when CPU utilization starts to fall
back to its normal level.

The following table shows some sample configuration values for
this scenario.

Configuration item Default value

Rule evaluation interval 30 minutes

Tracking interval Five minutes

Instance count collection interval Two minutes (hardcoded)

Performance counter collection interval Two minutes (hardcoded)

Queue length collection interval Two minutes (hardcoded)

Cool-down period (both for scaling up and down) 20 minutes

Operand: CPU Utilization % 30 minutes

Configuring the Stabilizer
The stabilizer performs two functions for the Autoscaling Application
Block: it helps to prevent fast oscillations (the “yo-yo effect”) in the
number of role instances by defining cool-down periods, and it helps
to optimize costs by limiting scaling-up operations to the beginning
of the hour and scaling-down operations to the end of the hour.

The following snippet from a service information definition
shows an example of the stabilizer configuration.

 71autoscaling and windows azure

XML
<stabilizer scaleUpCooldown="00:20:00"
 scaleDownCooldown="00:30:00"
 scaleUpOnlyInFirstMinutesOfHour="15"
 scaleDownOnlyInLastMinutesOfHour="10"
 notificationsCooldown="00:25:00">
 <role roleAlias="BillingWorkerRole"
 scaleUpCooldown="00:18:00"
 scaleDownCooldown="00:18:00" />
</stabilizer>

You can configure global stabilizer settings and override them for
specific roles.

In this example, the scaleUpCooldown setting prevents the ap-
plication block from scaling up a role for 20 minutes after any change
in the instance count for that role. Similarly, the scaleDownCooldown
setting prevents the application block from scaling down a role for 30
minutes after any change in the instance count for that role.

The scaleUpOnlyInFirstMinutesOfHour setting ensures that
the application block only performs scale up operations during the
first 15 minutes of the hour, and the scaleDownOnlyInLastMinutes
OfHour setting ensures that scale-down operations only happen in
the last 10 minutes of the hour. These two settings enable you to
optimize the use of your role instances based on the Windows Azure
billing mechanism.

At the time of this writing, partial compute instance hours are
billed as full compute hours for each clock hour an instance is
deployed. For example, if you deploy a Small compute instance at
10:50 and delete the deployment at 11:10, then you will be billed
for two Small compute hours, one compute hour for usage during
10:50 to 11:00 and another compute hour for usage during 11:00
to 11:10. Therefore, it makes sense to keep new instances alive for
the remainder of the clock hour during which they were started.
For more information, see “Usage Charge Details for Windows
Azure Bills.”

The two sets of settings interact with each other. In this example,
scale-up operations are only allowed during the first 15 minutes of the
hour. If the application block scales up a role a five minutes past the
hour, the cool-down period will not allow any additional scale-up
operations on that role for another 20 minutes. Because of the scale
UpOnlyInFirstMinutesOfHour setting, this means that the stabilizer
will not allow additional scale-up operations on this role within this
clock hour.

http://go.microsoft.com/fwlink/?LinkID=234626
http://go.microsoft.com/fwlink/?LinkID=234626

72 chapter four

Using the Planning Tool
This worksheet helps you to understand the interactions between

different timing values that govern the overall autoscaling process.
You can download this worksheet from the Enterprise Library Com-
munity site on CodePlex.

You can observe how different values can interact with each
other by entering the values related to your environment.

Take the example in Figure 9 where Operands 1 and 2 are perfor-
mance counters and Operand 3 is a custom business metric. You are
evaluating the rules every 60 minutes.

figure 9
Planning sheet inputs

The planning sheet shows the results in Figure 10.

figure 10
Planning results

This example demonstrates why you must be careful with your
Autoscaling Application Block configuration settings. In the first hour,
you can see how the timing of the data transfer means that you don’t
use the last values for Operands 1 and 2. You may decide to change

http://go.microsoft.com/fwlink/?LinkID=234704
http://go.microsoft.com/fwlink/?LinkID=234704

 73autoscaling and windows azure

the aggregation interval for the operands, change the log transfer in-
terval, or decide that this behavior is appropriate for the data you
collect from your application.

The real value of this tool becomes evident if you have a large
number of operands.

The tool works by generating a set of data on a hidden sheet. If
you unhide the worksheet, you will observe many #N/A values.
These are deliberate and prevent the chart from showing jagged
lines.

How the Autoscaling Application Block Works
This section summarizes how the Autoscaling Application Block

works. If you’re not interested in the internal workings of the block,
you can skip this section. Figure 11 illustrates how the key compo-
nents in the Autoscaling Application Block relate to each other, to
Windows Azure, and to external components.

figure 11
Overview of the Autoscaling Application Block

74 chapter four

The Metronome
The work that the Autoscaling Application Block performs starts with
the Metronome. The Metronome generates a “tick” count that en-
ables it to run other activities on a regular schedule. In the Autoscaling
Application Block, it runs each Data Collector activity every two
minutes, the Rule Evaluator activity every t1 seconds and the Tracker
activity every t2 seconds. The default value for t1 is four minutes and
for t2 is five minutes, and you can override this in the application
block’s configuration settings.

The Data Collectors
Before the Autoscaling Application Block can execute any reactive
rules, it must collect the data point values from which it calculates the
aggregate values used in the reactive rules. A data point is the value of
a metric, such as CPU utilization, at a specific point in time. The Data
Collector activities retrieve data points from your Windows Azure
environment. The following table lists the possible sources of data
points.

Monitoring Data Source Description

Windows Azure Diagnostics
tables

These are the tables that Windows Azure
Diagnostics uses when it persists diagnostic data
collected at run time from the Windows Azure
environment. The block retrieves performance
counter data from the WADPerformance
CountersTable.

Windows Azure Storage API The data collector can query your application’s
Windows Azure storage, including queues,
blobs, and tables for custom data points. The
block retrieves Windows Azure queue lengths
using this API.

Windows Azure Storage
Analytics API

The data collector can use this API to obtain
data points related to your storage account, such
as transaction statistics and capacity data.

Application data The data collector can retrieve custom data
points from your application. For example, the
number of orders saved in a Windows Azure
table.

The Data Collector activities write the data point values they
collect to the Data Points Store.

Although not shown on the diagram, the application block cre-
ates the Data Collector activities after reading the Rules Store to
determine the data points that the reactive rules will use. In effect,
the application block infers which data points it should collect from
the rule definitions in the rules store.

 75autoscaling and windows azure

The service information store holds the information about your
Windows Azure application that the Data Collector activities need
to be able to access your roles and storage.

The Service Information Store
The Service Information Store stores the service information for
your Windows Azure application. This service information includes all
of the information about your Windows Azure application that the
block needs to be able to collect data points and perform scaling
operations.

The Data Points Store
The Data Collector activities populate the Data Points Store, which
is populated with data points. The Rule Evaluator activity queries the
Data Points Store for the data points that it needs to evaluate the
reactive rules.

By default, the Autoscaling Application Block uses Windows
Azure table storage for the Data Points Store.

The Rule Evaluator
In addition to running the Data Collector activity, the Metronome
also periodically runs the Rule Evaluator activity. When the Rule
Evaluator task runs, it queries the Rules Store to discover which au-
toscaling rules it should apply at the current time. The Rules Store
caches the rules in memory, but checks at a configurable period
whether the rules have changed and if so, reloads the rules from the
backing store. It then queries the data points in Data Points Store to
calculate the aggregate values that it needs to evaluate the reactive
rules. It also reconciles any conflicts between the rules before it exe-
cutes the actions triggered by the rules.

For more information about how the application block reconciles
conflicting rules and actions, see the topic “Understanding Rule Ranks
and Reconciliation.”

The Rules Store
The Rules Store holds a list of all of the autoscaling rules that you
have defined for your Windows Azure application. As a reminder,
these rules can be constraint rules or reactive rules.

By default, the Autoscaling Application Block uses Windows
Azure table storage for the Rules Store.

A rule can trigger one or more actions. The following table de-
scribes three types of actions that the Autoscaling Application Block
supports.

The block does not support
hosting the Data Points
Store in the local Windows
Azure storage emulator. The
block uses a Windows
Azure API call that is not
supported by the local
storage emulator.

http://msdn.microsoft.com/en-us/library/hh680923(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680923(v=PandP.50).aspx

76 chapter four

Action type Description

Scale action Performs instance autoscaling or sends a notification
to an operator.

Throttling action Performs application throttling.

Custom action Performs a custom, user-defined action.

The Autoscaling Application Block can also propose scaling ac-
tions to an operator via a notification mechanism.

The Logger
The Logger component optionally uses the Enterprise Library Log-
ging Application Block to save diagnostics information from the
Autoscaling Application Block. You can also configure the Logger
component to use other logging components such as the System.
Diagnostics namespace.

For more information about the logging information that the ap-
plication block generates, see the topic “Autoscaling Application Block
Logging” on MSDN.

For more information about configuring the logger, see the topic
“Entering Configuration Information” on MSDN.

The Scaler
The Scaler is responsible for communicating with Windows Azure to
add or remove role instances based on the rule actions. It also incor-
porates a stabilizer component to prevent the Scaler from repeatedly
adding and removing role instances.

Scaling operations may take some time to complete. The Scaler
initiates scaling operations and adds a message to the tracking queue
to record the fact that the application block has requested a scaling
operation.

The Scaler can send notification email messages to an operator
detailing proposed scaling actions instead of performing the actions
directly.

The Tracker
The Tracker activity tracks all the scaling operations initiated by the
Scaler. The Metronome runs the Tracker activity by default every
minute. The Tracker activity then checks to see which of the scaling
operations in the tracking queue have completed successfully or
failed. It logs details of completed scaling operations, including any
error information if the operation failed, and then removes the entry
from the queue.

http://msdn.microsoft.com/en-us/library/hh680883(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680883(v=pandp.50).aspx
http://msdn.microsoft.com/en-us/library/hh680915(v=PandP.50).aspx

 77autoscaling and windows azure

More Information
For more information about design requirements, see “Building a
Scalable, Multi-Tenant Application for Windows Azure” on MSDN:
http://msdn.microsoft.com/en-us/library/ff966483.aspx
For more information about compute hours in Windows Azure, see
“Usage Charge Details for Windows Azure Bills”:
http://go.microsoft.com/fwlink/?LinkID=234626
For more information about Windows Azure subscriptions, see the
Windows Azure Support page:
http://www.microsoft.com/windowsazure/support/
For more information about how the Autoscaling Application Block
reconciles conflicting rules, see “Understanding Rule Ranks and
Reconciliation” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680923(v=PandP.50).aspx
For a more detailed discussion of how you can estimate your
Windows Azure running costs, see the chapter “How Much Will It
Cost?” in the book “Moving Applications to the Cloud”:
http://msdn.microsoft.com/en-us/library/ff803375.aspx
For a discussion of session state in Windows Azure applications, see
“Storing Session State” in the book “Moving Applications to the
Cloud”:
http://msdn.microsoft.com/en-us/library/ff803373.aspx#sec11
For a discussion of some of the design issues associated with
scalable worker roles, see “Scaling Applications by Using Worker
Roles” in the book “Developing Applications for the Cloud”:
http://msdn.microsoft.com/en-us/library/hh534484.aspx#sec14
For information about how you can use NuGet to prepare your
Visual Studio project to work with the Autoscaling Application
Block, see the topic “Adding the Autoscaling Application Block to a
Host” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680920(v=PandP.50).aspx
For information about how to host the Autoscaling Application
Block in Windows Azure, see the topic “Hosting the Autoscaling
Application Block in a Worker Role” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680914(v=PandP.50).aspx
For information about how to reference the Enterprise Library
assemblies, how Enterprise Library handles dependencies, and how
to work with Enterprise Library objects, see “Using Enterprise
Library in Applications” in the main Enterprise Library documenta-
tion on MSDN:
http://msdn.microsoft.com/en-us/library/ff664560(PandP.50).aspx

http://msdn.microsoft.com/en-us/library/ff966483.aspx
http://go.microsoft.com/fwlink/?LinkID=234626
http://www.microsoft.com/windowsazure/support/
http://msdn.microsoft.com/en-us/library/hh680923(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff803375.aspx
http://msdn.microsoft.com/en-us/library/hh680920(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680914(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/ff664560(PandP.50).aspx

78 chapter four

For information about how to host the Autoscaling Application
Block in an on-premises application, see the topic “Hosting the
Autoscaling Application Block in an On-Premises Application” on
MSDN:
http://msdn.microsoft.com/en-us/library/hh680882(v=PandP.50).aspx
For more information about the code changes you must make in
your Windows Azure application to enable it to save performance
counter data, see the topic “Collecting Performance Counter Data”
on MSDN:
http://msdn.microsoft.com/en-us/library/hh680886(v=PandP.50).aspx
You can also use the Windows Azure Diagnostics Configuration File
(diagnostics.wadcfg) to configure your performance counters. For
more details, see “How to Use the Windows Azure Diagnostics
Configuration File” on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234617
The Autoscaling Application Block rules can only operate on targets
(roles and scale groups) that are identified in the block’s service
information. For more information, see the topic “Storing Your
Service Information Data” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680878(v=PandP.50).aspx
For information about a technique for parallelizing large calculations
across multiple role instances, see the section “The Map Reduce
Algorithm” in the book Developing Applications for the Cloud:
http://msdn.microsoft.com/en-us/library/ff966483.aspx#sec18
In Windows Azure, you can use the session state provider that
stores session state in the shared cache. For more information, see
the page “Session State Provider” on MSDN:
http://msdn.microsoft.com/en-us/library/gg185668.aspx
To minimize the risk of disclosing sensitive information, you should
encrypt the contents of the service information store. For more
information, see the topic “Encrypting the Rules Store and the
Service Information Store” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680910(v=PandP.50).aspx
For more information about how your Windows Azure application
can detect a request for throttling behavior, see the topic “Imple-
menting Throttling Behavior” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680896(v=PandP.50).aspx
For information about how to define the throttling autoscaling
rules, see the topic “Defining Throttling Autoscaling Rules” on
MSDN:
http://msdn.microsoft.com/en-us/library/hh680908(v=PandP.50).aspx

http://msdn.microsoft.com/en-us/library/hh680882(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680886(v=PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkID=234617
http://msdn.microsoft.com/en-us/library/hh680878(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/gg185668.aspx
http://msdn.microsoft.com/en-us/library/hh680910(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680896(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680908(v=PandP.50).aspx

 79autoscaling and windows azure

For a complete example of how the Tailspin Surveys application uses
throttling behavior, see Chapter 5, “Making Tailspin Surveys More
Elastic” in this guide.
If your reactive rules use performance counter data from your
Windows Azure application, you must make sure that your applica-
tion transfers the performance counter data that the rules consume
to Windows Azure Diagnostics storage. For an example of how to
do this, see the section “Collecting Performance Counter Data from
Tailspin Surveys” in Chapter 5, “Making Tailspin Surveys More
Elastic” of this guide.
For information about the logging data that the Autoscaling Ap-
plication Block generates, see the topic “Autoscaling Application
Block Logging” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680883(v=PandP.50).aspx
For more information about reading and parsing the Autoscaling
Application Block log messages, see the topic “Reading the Auto-
scaling Application Block Log Messages”:
http://msdn.microsoft.com/en-us/library/hh680909(v=PandP.50).aspx
For more information about configuring the Autoscaling Application
Block and configuring the logger, see the topic “Entering Configura-
tion Information” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680915(v=PandP.50).aspx
For more information about reading from the rules store, see the
“IRulesStore interface” in the API documentation on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234680
For more information about reading from the service information
store, see the “IServiceInformationStore interface” in the API
documentation on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234681
For more information about reading from the rules store, see the
“IDataPointsStore interface” in the API documentation on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234682
For a complete example of using the different data sources to
visualize the Autoscaling Application Block activities, see the section
“Visualizing the Autoscaling Actions” in Chapter 5, “Making Tailspin
Surveys More Elastic.”
For more information about how to configure notifications, see the
topic “Using Notifications and Manual Scaling” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680885(v=PandP.50).aspx

http://msdn.microsoft.com/en-us/library/hh680883(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680909(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680915(v=PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkID=234680
http://go.microsoft.com/fwlink/?LinkID=234681
http://go.microsoft.com/fwlink/?LinkID=234682
http://msdn.microsoft.com/en-us/library/hh680885(v=PandP.50).aspx

80 chapter four

For more information extending and modifying the Autoscaling
Application Block, see the topic “Extending and Modifying the
Autoscaling Application Block” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680889(v=PandP.50).aspx
•	 For more information about custom actions, see the topic

“Creating a Custom Action” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680921(v=PandP.50).
aspx

•	 For an example of a custom action and a custom operand, see
Chapter 5, “Making Tailspin Surveys More Elastic.”

•	 For more information about custom operands, see the topic
“Creating a Custom Operand” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680912(v=PandP.50).
aspx

•	 For more information about creating a custom rules store, see
the topic “Creating a Custom Rules Store” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680933(v=PandP.50).
aspx

•	 For more information about creating a custom service informa-
tion store, see the topic “Creating a Custom Service Information
Store” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680884(v=PandP.50).
aspx

•	 For more information about creating a custom logger, see the
topic “Creating a Custom Logger” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680926(v=PandP.50).
aspx

For more information about extending the Enterprise Library, see
the “Extensibility Hands-on Labs for Microsoft Enterprise Library
5.0”:
http://go.microsoft.com/fwlink/?LinkId=209184
For more information about the WASABiCmdlets, see the topic
“Using the WASABiCmdlets Windows PowerShell Cmdlets” on
MSDN:
http://msdn.microsoft.com/en-us/library/hh680938(v=PandP.50).aspx
For more information about the Windows Azure PowerShell
Cmdlets, see “Windows Azure PowerShell Cmdlets” on CodePlex:
http://wappowershell.codeplex.com/
For more information about SCOM, see “System Center Operations
Manager” on TechNet:
http://technet.microsoft.com/en-us/systemcenter/om/default.aspx

http://msdn.microsoft.com/en-us/library/hh680889(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680921(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680921(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680912(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680912(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680933(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680933(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680884(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680884(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680926(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680926(v=PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkId=209184
http://msdn.microsoft.com/en-us/library/hh680938(v=PandP.50).aspx
http://wappowershell.codeplex.com/
http://technet.microsoft.com/en-us/systemcenter/om/default.aspx

 81autoscaling and windows azure

For more information about writing autoscaling rules, see the topics
“Defining Constraint Rules” and “Defining Reactive Rules” on
MSDN:
http://msdn.microsoft.com/en-us/library/hh680917(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680897(v=PandP.50).aspx
For more information about billing details in Windows Azure, see
“Usage Charge Details for Windows Azure Bills”:
http://go.microsoft.com/fwlink/?LinkID=234626
The Autoscale Planner worksheet helps you to understand the
interactions between different timing values that govern the overall
autoscaling process. You can download this worksheet from the
Enterprise Library Community site on CodePlex:
http://go.microsoft.com/fwlink/?LinkID=234704
To access web resources more easily, see the online version of the
bibliography on MSDN:
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

http://msdn.microsoft.com/en-us/library/hh680917(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680897(v=PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkID=234626
http://go.microsoft.com/fwlink/?LinkID=234704
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

 83

5 Making Tailspin Surveys
More Elastic

This chapter walks you through the changes that Tailspin made when
it added the Autoscaling Application Block to the Surveys application.
These changes made it possible to automate the processes of adding
and removing role instances as well as to manage the application’s
resource requirements in response to changes in demand for the ap-
plication. The chapter also shows how Tailspin configured different
sets of autoscaling rules for different elements of the Surveys applica-
tion to meet their different autoscaling requirements and describes
how Tailspin plans to monitor and refine its autoscaling rules.

The Premise
The number of customers using the Tailspin Surveys application con-
tinues to grow, with customers creating and publishing surveys all
around the world. The number of surveys with large numbers of re-
spondents is also increasing. Tailspin has noticed that there are an in-
creasing number of bursts in demand associated with these large
surveys, with the bursts occurring very shortly after the customer
publishes the survey. Tailspin cannot predict when these bursts will
occur, or in which geographic location they will occur. Tailspin has also
noticed that there are overall bursts in demand at particular times in
particular geographic locations. For some of these bursts Tailspin
understands the cause, such as an upcoming holiday season; for oth-
ers, Tailspin does not yet understand what triggered the burst in de-
mand.

The Tailspin operators have always carefully monitored the traffic
and the utilization levels of their systems. When needed, they manu-
ally adjust the number of web and worker role instances to accom-
modate the change in demand. However, they find it difficult to de-
termine the correct number of role instances to have active at
specific times. To ensure high performance and availability for the
Surveys application, they usually start up more servers than they

84 chapter five

might need. However, when a large burst in traffic occurs, it can take
Tailspin’s operators some time to react and increase the server capac-
ity, especially for non-US based data centers. Also, operators at Tail-
spin have sometimes been slow to shut down servers when a burst in
activity is over.

The result of this manual process is that there are often too many
active role instances, both during times of normal activity and during
bursts of activity, which increases the operational costs of the Sur-
veys application. Also, when an unpredicted burst in traffic occurs, it
can take too long to add new role instances, which results in poor
performance and a negative user experience.

Goals and Requirements
Tailspin wants to make their application more elastic, so that the
number of servers can grow and shrink automatically as demand var-
ies. This will reduce the costs of running the Surveys application in
Windows Azure™ technology platform and also reduce the number
of ad hoc, manual tasks for Tailspin’s operators.

Tailspin wants to set explicit boundaries on the number of active
role instances, to keep the operational costs within a predictable
range and to ensure that the Windows Azure SLA applies to the Sur-
veys application.

In the past, Tailspin has encountered some very sudden bursts in
demand; for example, when customers have offered a reward for the
first number of people to complete a survey. Tailspin is concerned that
new role instances cannot be started fast enough to meet these types
of activity bursts. In this type of scenario, Tailspin would like to be
able to immediately begin degrading some of the non-essential func-
tionality of the application so that the UI response times are main-
tained until the new role instances have started and are available to
help out. Tailspin would also like its operators to be notified by an
SMS message when certain scaling operations are taking place.

Currently, all of Tailspin’s
operators are based in the
United States (US), so the
number of operators on
duty is lower outside of
normal working hours. As a
result, they sometimes don’t
respond immediately to
bursts in demand in other
geographic locations.

We need to reduce the
operational costs to be
more competitive. By using
autoscaling in the Surveys
application, we can do that
and still meet our service-
level agreement (SLA)
requirements.

In the Tailspin Surveys application, the
number of role instances is the key
resource that Tailspin can vary to meet
changes in workload. In other applica-
tions, the resources could include items
such as the number of queues, or the size
of the database.

 85making tailspin surveys more elastic

Tailspin can already predict when some bursts in demand will oc-
cur based on data that it has collected in the past. Tailspin wants to
be able to pre-emptively timetable the addition and removal of role
instances so that there is no lag when such a burst in demand occurs.

Overall, Tailspin wants to reduce the operational costs while still
providing the maximum performance for their end users. This means
using the minimum number of role instances required to perform a
task at the required level of performance. When the values for certain
performance counters, such as CPU usage, exceed a predefined
threshold, the system should add more role instances until the values
have dropped to more acceptable levels. When the values for these
performance counters drop enough, the role instance should be re-
moved again.

Tailspin must be able to control the autoscaling parameters by
defining rules. A rule defines which instances will be scaled, which
metrics to monitor, and what thresholds to use for scaling up and
down. For example, when CPU utilization hits 80% as averaged across
the running instances, add a new role instance. It should also be pos-
sible to use rules to set the minimum and maximum number of role
instances for a certain timeframe. These rules should be configurable
through a user interface.

It is difficult to determine the right number of role instances for
a particular task, even with an automatic scaling solution. Tailspin
wants to have access to detailed logging information that records the
autoscaling activities that have taken place. For example, Tailspin
wants to know when a role instance was added or removed and what
triggered that action. Tailspin plans to analyze this data and use the
results to refine the autoscaling behavior of the Surveys application.

Tailspin wants to get an overview of the resource utilization over
time. For example, it wants to know how many role instances were
active at a certain point in time, what their CPU utilization was, and
how many concurrent users were active at that time. Tailspin wants to
be able to analyze when bursts in overall demand occurred in particu-
lar geographic locations so that it can plan for these events in the
future. Tailspin also plans to use this information to fine-tune their
pricing strategy based on more detailed analysis of predicted levels of
demand.

Tailspin has deployed the Surveys application to multiple Win-
dows Azure data centers to ensure that the Surveys application is
available in a data center located close to the majority of people who
complete surveys. Tailspin would like to use a single management ap-
plication from which Tailspin can create and edit the various autoscal-
ing rules used in the different geographical locations, and also monitor
the autoscaling behavior in all the data centers. At the same time,
Tailspin wants to minimize the costs of this distributed autoscaling
solution.

We conducted performance
tests to identify the most
resource-intensive areas of
our application. It turned
out that some of these areas
could be turned off or
postponed to reduce the
load on our application.

86 chapter five

Overview of the Autoscaling Solution
This section describes how the Autoscaling Application Block helped
the Tailspin Surveys application become more elastic.

Using the Autoscaling Application Block
in Tailspin Surveys

This section describes how the Surveys application uses the features
of the Autoscaling Application Block.

For more information about autoscaling and how the Autoscaling
Application Block works, see Chapter 4, “Autoscaling and Windows
Azure,” in this guide.

Features of the Autoscaling Application Block
The Autoscaling Application Block provides two types of autoscaling
rules: constraint rules and reactive rules. Tailspin uses both types of
rules in the Surveys application.

Tailspin uses constraint rules to specify minimum and maximum
numbers of role instances for both its worker and web roles. Tailspin
can set minimum values to ensure that it meets its SLA commitments
and use the maximum values to ensure that its costs are kept under
control. It uses a number of constraint rules to set different maximum
and minimum values at different times of the day when it can predict
changes in the workload for the Surveys application.

Tailspin uses reactive rules to enable the Surveys application to
respond to sudden changes in demand. These rules are based on met-
rics that Tailspin has identified for the Surveys application. Some of
these metrics are standard performance counters; some require cus-
tom data that is specific to the Tailspin Surveys application.

In addition to rules that automatically change the number of role
instances in the Surveys application, Tailspin also uses reactive rules
to modify the behavior of the application. These rules are designed to
help the surveys application respond quickly to sudden bursts in de-
mand before new role instances can be started.

Tailspin operators also regularly review all of the diagnostics data
that is collected from the Surveys application in order to ensure that
the current rules provide the optimum behavior, that Tailspin’s SLAs
are being met, and that there are no unnecessary role instances run-
ning. Tailspin operators use this data to refine the set of rules in order
to better meet the SLA and cost requirements of the Surveys applica-
tion.

For more information about the functionality and usage of the
Autoscaling Application Block, see Chapter 4, “Autoscaling and Win-
dows Azure.”

 87making tailspin surveys more elastic

Hosting the Autoscaling Application Block
in Tailspin Surveys

Tailspin decided to host the Autoscaling Application Block in a web
role in Windows Azure. It also considered hosting the Autoscaling
Application Block in an on-premises application. Tailspin did not iden-
tify any benefits from hosting the Autoscaling Application Block in an
on-premises application; it has no plans to integrate the Autoscaling
Application Block with any existing on-premises logging or diagnostic
tools. The following diagram shows some of the high-level compo-
nents of the Tailspin Surveys application that will take part in the
autoscaling process.

The Tailspin autoscaling hosted service includes the autoscaling
management web role and the autoscaling worker role. These two
roles are typically developed together, and it simplifies the
deployment of the Surveys application to place them in the same
hosted service.

If your management website has more responsibilities than
managing the autoscaling process, you should consider using a
separate hosted service for each role so they can be developed and
deployed in isolation.

figure 1
Components that
take part in
autoscaling in
Tailspin Surveys

88 chapter five

In the Tailspin Surveys application, the public web role that people
use to submit survey answers and the worker role will benefit from
scaling; both have been affected by high usage levels in the past. Tail-
spin does not anticipate that the tenant’s web roles will be affected
by high levels of demand because tenants use the tenant web role to
design new surveys. However, Tailspin will add some autoscaling rules
in case of any unexpected bursts in demand.

Scale Groups in Tailspin Surveys
The Tailspin Surveys application only has two role types that Tailspin
wants to scale automatically: the public web role and the worker role
responsible for statistics calculation and data export. These two roles
have different usage patterns and need different autoscaling rules, so
there is no benefit in grouping them together in a scale group. Simi-
larly, the instances of each role type that run in different Windows
Azure data centers also need to be scaled independently of each
other. Therefore, Tailspin does not use the scale groups feature of the
Autoscaling Application Block.

Autoscaling Rules in Tailspin Surveys
The following table shows the initial set of constraint rules that Tail-
spin identified for use in the Surveys application.

Description Rank Timetable Role Maximum
instances

Minimum
instances

Default
constraints for
all roles

0 All day,
every day

Tailspin
worker role

5 2

Default
constraints for
all roles

0 All day,
every day

Tailspin
public web
role

5 2

Default
constraints for
all roles

0 All day,
every day

Tailspin
tenant web
role

5 2

Additional
instances for
public web
during peak
hours

5 8:00 – 9:50
on
Monday,
Tuesday,
Wednes-
day,
Thursday,
Friday

Tailspin
public web
role

6 3

One of the reasons Tailspin
designed the Surveys
application with multiple
web roles was because
of the differences in
anticipated usage patterns.
Each web and worker role
can be scaled independently
of the others.

Tailspin has been
careful to ensure that
the tenant and
management web
roles can be scaled in
case they need to add
autoscaling behavior
to these roles in the
future.

 89making tailspin surveys more elastic

The following table shows the initial set of reactive rules that
Tailspin identified for use in the Surveys application.

Description Target Action

Look at number of
rejected requests and
CPU usage for the public
website. If both becomes
too large, then scale up
the number of instances.

Tailspin Surveys public
web role

Add one instance

Look at number of
rejected requests and
CPU usage for the public
website. If both drop to
acceptable levels, then
reduce the number of
instances.

Tailspin Surveys public
web role

Remove one instance

When there is a burst in
activity on the tenant
website or the worker
role, then enable
throttling. This should
reduce the load so that
the site remains
workable. If the load
remains high, then the
scaling rules will kick in
and increase the number
of instances.

Tailspin Surveys worker
role
Tailspin Surveys tenant
web role

Throttling mode
“ReduceSystemLoad”

When the burst in
activity is over, then
disable throttling.

Tailspin Surveys worker
role
Tailspin Surveys tenant
web role

Throttling mode
“Normal”

When there are many
tenants or surveys and
there is high CPU usage,
then add more capacity
to the public web site.

Tailspin Surveys public
web role

Add one instance

When there are a normal
number of tenants and
surveys, then decrease
the number of instances.

Tailspin Surveys public
web role

Remove one instance

Look at number of
rejected requests and
CPU for the tenant
website. If either
becomes too large, then
scale up the number of
instances.

Tailspin Surveys tenant
web role

Add one instance

The minimum values
are important for
Tailspin to meet its
SLA commitments;
the maximum values
help Tailspin to
manage the costs of
running the Surveys
application.

90 chapter five

Look at number of
rejected requests and
CPU for the tenant
website. If the load is
acceptable, then reduce
the number of instances.

Tailspin Surveys tenant
web role

Remove one instance

These tables show the initial set of rules that Tailspin used in the
production version of the Surveys application. Tailspin will monitor
and evaluate these rules to determine if they are producing optimal
scaling behavior. Tailspin expects to make the following types of ad-
justment to the set of rules to improve their effectiveness.
•	 Modify the threshold values that determine when to scale down

or out and when to enable or disable throttling.
•	 Add additional constraint rules to handle other predictable

changes in activity.
•	 Change the metrics and timespans that the reactive rules use to

trigger scaling actions.
•	 Use different rule sets in different Windows Azure data centers

to reflect different usage patterns in different geographic
locations.
From the initial set of rules, Tailspin identified a set of metrics

that it must configure the application block to collect. The following
table shows the initial set of metrics that Tailspin identified for the
reactive rules in the Surveys application.

Description Aggregate
function

Timespan Source Metric

CPU usage in
the Surveys
public web
role

Average 20 minutes Tailspin public
web role

\Processor
(_Total)\%
Processor
Time

CPU usage in
the Surveys
worker role

Average 5 minutes Tailspin
worker role

\Processor
(_Total)\%
Processor
Time

CPU usage in
the Surveys
tenant web
role

Average 20 minutes Tailspin
tenant web
role

\Processor
(_Total)\%
Processor
Time

CPU usage in
the Surveys
tenant web
role

Average 5 minutes Tailspin
tenant web
role

\Processor
(_Total)\%
Processor
Time

 91making tailspin surveys more elastic

Rejected ASP.
NET requests
in the Surveys
public web
role

Average 10 minutes Tailspin public
web role

\ASP.NET\
Requests
Rejected

Rejected ASP.
NET requests
in the Surveys
tenant web
role

Average 10 minutes Tailspin
tenant web
role

\ASP.NET\
Requests
Rejected

Number of
surveys
submitted

Average 10 minutes The Surveys
application

The number
of active
surveys in the
Surveys
application

Number of
tenants

Average 10 minutes The Surveys
application

The number
of registered
tenants

Number of
instances of
the Surveys
public web
role.

Last 8 minutes Tailspin public
web role

Role instance
count

Collecting Autoscaling History Data
in Tailspin Surveys

Tailspin knows that usage patterns for the Surveys application change
over time in different geographical locations. Tailspin is also aware
that through careful analysis of the way the Surveys application is
used, it can identify usage patterns.

Tailspin prefers to be proactive in the way that it approaches au-
toscaling, so it favors constraint rules over reactive rules. In this way
it can try to ensure that it has the right number of instances active so
that it can meet its SLA commitments without the need to add new
instances in response to changes in workload. Therefore, every month
Tailspin reviews the log data collected from the Autoscaling Applica-
tion Block to try to identify any new patterns or changes in existing
patterns. If there are any changes to usage patterns, it either modifies
existing constraint rules or adds new ones.

Tailspin still maintains a set of reactive rules so that the Surveys
application can respond to any unanticipated changes in its workload.
Tailspin also analyzes when and why these reactive rules ran to make
sure that they are performing the optimum scaling operations.

Tailspin developed custom
operands to collect the
number of active surveys
and active tenants from the
Surveys application.

Analyzing past behavior
helps you to optimize your
autoscaling rules.

92 chapter five

An Autoscaling Configuration UI
Although it is possible for administrators to edit the XML file that
contains Tailspin’s autoscaling rules directly, this is a potentially error-
prone process. If used, a schema-aware XML editor may handle some
of the validation issues, but some values in the rules definition file
refer to entries in the service information definition and any errors in
the references will not be detected by the XML validation. In addition,
the administrators would also need to upload the rules XML file to
the correct storage location for the application block to be able to
load and use the new rules definitions. Because of these challenges,
Tailspin decided to build a web-hosted rules editor that would handle
all of the validation issues and be able to save the rules to the correct
location.

There are similar issues associated with the XML file that contains
the Survey’s service information description. Tailspin anticipates that
administrators will need to edit the scale group definitions in this file,
and wants administrators to be able to perform this task through the
same UI that they use for editing rules.

Notifying Operators by SMS When
a Scaling Operation Takes Place

Sending notifications by SMS when performing a scaling action is not
one of the built-in features of the Autoscaling Application Block.
Tailspin decided to create a custom action to send SMS notifications.
Tailspin can add this custom action to selected reactive rules so that
its operators are always notified when significant scaling operations
are taking place.

Although the Autoscaling Application Block already includes a
feature that can send notifications when it performs a scaling action,
the built-in feature uses email and Tailspin prefers to use SMS mes-
sages to notify its operators.

Inside the Implementation
This section describes some of the details of how Tailspin hosted the
Autoscaling Application Block and modified the Surveys application
to work with the application block. If you are not interested in the
details, you can skip to the next section.

You may find it useful to have the Tailspin solution open in Micro-
soft® Visual Studio® development system while you read this section
so that you can refer to the code directly.

For instructions about how to install the Tailspin Surveys applica-
tion, see Appendix B, “Tailspin Surveys Installation Guide.”

Tailspin’s administrators do
not need to be able to edit
the other elements, such
as the subscription details
and the list of scalable roles
in the service information
definition. These values
are set once when the
application is first deployed
to Windows Azure.

 93making tailspin surveys more elastic

Enabling the Autoscaling Application
Block to Read from the .cscfg File

The Autoscaling Application Block reads connection string informa-
tion from the .cscfg file in order to access Windows Azure storage. It
does this by using the FromConfigurationSetting method in the
CloudStorageAccount class. For this to work, the Surveys application
must set up a configuration setting publisher at startup. The following
code from the Global.asax.cs file in the Tailspin.Web.Management
project shows this.

C#
CloudStorageAccount.SetConfigurationSettingPublisher(
 (s, p) => p(RoleEnvironment.GetConfigurationSettingValue(s)));

For more information, see “CloudStorageAccount.SetConfigura-
tionSettingPublisher Method” on MSDN.

Tailspin’s Service Information Definition
The following code snippet shows the default service information
definition for the Tailspin Surveys application. Tailspin defines the
contents of this file once for the initial deployment; they do not an-
ticipate changing anything after the Autoscaling Application Block is
running.

XML
<serviceModel ...>
 <subscriptions>
 <!--
 Todo when installing the RI for the first time:
 Update your subscription ID and Certificate Thumbprint
 -->
 <subscription name="TailspinSubscription"
 subscriptionId="[Enter subscription id here]"
 certificateThumbprint="
 [Enter certificate thumbprint here]"
 certificateStoreName="My"
 certificateStoreLocation="LocalMachine">
 <services>
 <service dnsPrefix="Tailspin-Surveys"
 slot="Staging" scalingMode="Scale">
 <roles>
 <role alias="SurveyWorkers"
 roleName="Tailspin.Workers.Surveys"
 wadStorageAccountName="TailspinStorage" />
 <role alias="PublicWebSite"
 roleName="Tailspin.Web.Survey.Public"

You should set up
a configuration
setting publisher for
each role that the
Autoscaling
Application Block
is configured to
monitor and scale.

http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.cloudstorageaccount.setconfigurationsettingpublisher.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.cloudstorageaccount.setconfigurationsettingpublisher.aspx

94 chapter five

 wadStorageAccountName="TailspinStorage" />
 <role alias="TenantWebSite"
 roleName="Tailspin.Web"
 wadStorageAccountName="TailspinStorage" />
 </roles>
 </service>
 </services>
 <storageAccounts>
 <!--
 Todo when installing the RI for the first time:
 Update the connection string to your storage account
 -->
 <storageAccount alias="TailspinStorage"
 connectionString=
 "[Enter connection string here]">
 <queues>
 <queue alias="SurveyAnswerStoredQueue"
 queueName="surveyanswerstored" />
 <queue alias="SurveyTransferQueue"
 queueName="surveytransfer" />
 </queues>
 </storageAccount>
 </storageAccounts>
 </subscription>
 </subscriptions>
 <scaleGroups />
 <stabilizer scaleUpCooldown="00:10:00"
 scaleDownCooldown="00:10:00"
 notificationsCooldown="00:30:00">
 <role roleAlias="PublicWebSite" scaleUpCooldown="00:08:00"
 scaleDownCooldown="00:15:00" />
 </stabilizer>
</serviceModel>

If you are installing the Tailspin Surveys application, you must edit
this file to add the information that is specific to your Windows
Azure account. For more information, see the section “Setup and
Physical Deployment” in this chapter. A sample service informa-
tion definition file is included in the “Sample Stores” folder in the
Visual Studio solution.

The role and queue aliases are used in Tailspin Survey’s autoscal-
ing rules.

Tailspin is only using the
Autoscaling Application
Block to scale three roles, so
it is not using scale groups.
If you use scale groups in
your application, you define
them in the service
information definition file.

 95making tailspin surveys more elastic

The stabilizer element shows the cool-down periods configured by
Tailspin. These include global settings and specific settings for the
public website. Tailspin has extended to 15 minutes the amount of
time that must elapse after a scaling operation before the public web-
site can be scaled down. Scaling up the public website can happen
slightly earlier than the other roles.

Tailspin’s Autoscaling Rules
The following code snippets show a default set of rules that Tailspin
used when it first started using the Autoscaling Application Block.
Tailspin plans to evaluate the effectiveness of these rules in scaling
the Surveys application, and will make changes when it has collected
sufficient data to be able to analyze the autoscaling behavior in their
production environment. Tailspin has built a web-based rule editor to
enable operators to edit the rules more easily. For more information
about Tailspin’s web-based rule editor, see the section “Editing and
Saving Rules” in this chapter.

Tailspin Surveys Constraint Rules
The following code snippet shows the initial set of constraint rules
that Tailspin configured for the Surveys application. There is a default
rule that sets default values for all of the roles in Tailspin Surveys; it
has a rank of zero. The second rule scales up the Tailspin Surveys
worker role in anticipation of greater levels of activity during the work
week.

XML
<rules ...>
 <constraintRules>
 <rule name="Default constraints for all roles"
 description="This rule sets the default constraints for
 all web and worker roles. The minimum values guard our
 SLA, by ensuring there will never be less than these
 instances. The maximum values guard our wallet, by
 ensuring there will never be more than the configured
 number of instances."
 enabled="true" rank="0">
 <timetable startTime="00:00:00"
 duration="1.00:00:00" utcOffset="+00:00">
 <daily />
 </timetable>
 <actions>
 <range target="SurveyWorkers" min="2" max="5" />

96 chapter five

 <range target="PublicWebSite" min="2" max="5" />
 <range target="TenantWebSite" min="2" max="5" />
 </actions>
 </rule>
 <rule name="Additional instances for public web during peak
 hours" description="Our testing has indicated that
 there will be additional load during peak hours. To
 accommodate for that additional load, there will be
 additional instances for the public website. These
 peaks occur during working hours and early evenings.
 By providing a higher rank, this rule takes precedence
 over the default rule."
 enabled="true" rank="5">
 <timetable startTime="08:00:00" duration="09:50:00"
 utcOffset="+00:00">
 <weekly days="Monday Tuesday Wednesday Thursday Friday" />
 </timetable>
 <actions>
 <range target="PublicWebSite" min="3" max="6" />
 </actions>
 </rule>
 </constraintRules>
 ...
</rules>

Tailspin Surveys Reactive Scaling Rules
The following snippet shows how Tailspin initially defined the reac-
tive scaling rules for the Surveys application. The first pair of rules
defines how the Surveys public web role should scale up or down
based on the number of rejected ASP.NET requests and CPU utiliza-
tion levels. The second pair of rules defines how the Surveys public
web role should scale up or down based on the number of tenants and
active surveys. The third pair of rules defines how the Surveys tenant
web role should scale up or down based on the number of rejected
ASP.NET requests and CPU utilization levels.

XML
<rules ...>
 ...
 <reactiveRules>
 ...
 <rule name="Public Web - Heavy Demand (Increase)"
 description="Look at number of rejected requests and
 CPU for the public website. If either becomes too
 large, then scale up the number of instances."

Notice how the
reactive rules are
paired; one specifies
when to scale up, and
one specifies when
to scale down.

 97making tailspin surveys more elastic

 enabled="true">
 <actions>
 <scale target="PublicWebSite" by="1" />
 </actions>
 <when>
 <all>
 <greater operand=
 "PublicWeb_AspNetRequestsRejected_Avg_10m" than="5" />
 <greater operand="PublicWeb_CPU_Avg_20m" than="80" />
 </all>
 </when>
 </rule>
 <rule name="Public Web - Normal Demand (Reduce)"
 description="Look at number of rejected requests and
 CPU for the public website. If both drop to acceptable
 levels, then reduce the number of instances."
 enabled="true">
 <actions>
 <scale target="PublicWebSite" by="-1" />
 </actions>
 <when>
 <all>
 <lessOrEqual operand=
 "PublicWeb_AspNetRequestsRejected_Avg_10m" than="1" />
 <lessOrEqual operand="PublicWeb_CPU_Avg_20m" than="40" />
 </all>
 </when>
 </rule>

 <rule name="PublicWeb - Many Tenants Or Surveys (Increase)"
 description="When there are many tenants or surveys and
 the CPU usage is high, then we’ll need more capacity in
 the public website. This rule demonstrates
 the use of the custom operands, called ActiveSurveyCount
 and TenantCount. Using the load simulation page, you can
 easily add and remove tenants and surveys to test the
 load on the system."
 enabled="true">
 <actions>
 <scale target="PublicWebSite" by="1" />
 </actions>
 <when>
 <all>
 <any>
 <greaterOrEqual operand=

98 chapter five

 "Tailspin_ActiveSurveyCount_Avg_10m"
 than="50 * PublicWeb_InstanceCount_Last" />
 <greaterOrEqual operand="Tailspin_TenantCount_Avg_10m"
 than="50 * PublicWeb_InstanceCount_Last" />
 </any>
 <greater operand="PublicWeb_CPU_Avg_20m" than="50"/>
 </all>
 </when>
 </rule>
 <rule name="PublicWeb - Normal Tenants And Surveys (Decrease)"
 description="When there are a normal number of tenants and surveys, then
 decrease the number of instances."
 enabled="true">
 <actions>
 <scale target="PublicWebSite" by="-1" />
 </actions>
 <when>
 <all>
 <less operand="Tailspin_TenantCount_Avg_10m"
 than="30 * PublicWeb_InstanceCount_Last" />
 <less operand="Tailspin_ActiveSurveyCount_Avg_10m"
 than="30 * PublicWeb_InstanceCount_Last" />
 </all>
 </when>
 </rule>

 <rule name="TenantWeb - Heavy demand (Increase)"
 description="Look at number of rejected requests and
 CPU for the tenant website. If either becomes too
 large, then scale up the number of instances."
 enabled="true">
 <actions>
 <scale target="TenantWebSite" by="1" />
 </actions>
 <when>
 <all>
 <greaterOrEqual operand="TenantWeb_AspNetRequestsRejected_avg_10m"
 than="5" />
 <greaterOrEqual operand="TenantWeb_CPU_Avg_20m" than="80" />
 </all>
 </when>
 </rule>
 <rule name="TenantWeb - Normal Demand (Decrease)"
 description="Look at number of rejected requests and
 CPU for the tenant website. If the load is acceptable,

 99making tailspin surveys more elastic

 then reduce the number of instances."
 enabled="true">
 <actions>
 <scale target="TenantWebSite" by="-1" />
 </actions>
 <when>
 <all>
<lessOrEqual operand=
 "TenantWeb_AspNetRequestsRejected_avg_10m" than="2" />
<lessOrEqual operand=
 "TenantWeb_CPU_Avg_20m" than="60"/>
</all>
 </when>
 </rule>
 ...
 </reactiveRules>
 ...
</rules>

Tailspin has not assigned a rank to any of the reactive rules.

Tailspin Surveys Reactive Throttling Rules
Tailspin uses throttling rules to dynamically change the behavior of
the Surveys public web role. It uses CPU utilization to determine
when to enable and when to disable throttling in the Surveys applica-
tion.

For more information about how Tailspin implemented the throt-
tling behavior in the Surveys application, see the section “Implement-
ing Throttling Behavior,” later in this chapter.

XML
<rules ...>
 ...
 <reactiveRules>
 ...

<rule name=
 "TenantWeb & Survey Worker - Burst - Throttle"
 description="When there is a burst in activity on the
 tenant website and the worker role, then enable
 throttling. This should reduce the load so that the
 site remains workable. If the load remains high, then
 the scaling rules will kick in and increase the number
 of instances. Throttling in Tailspin does the
 following:

Throttling behavior is
triggered by using the
changeSetting
action.

100 chapter five

 * Disable exporting of values to Microsoft SQL Server
 in the worker role.
 * Only allow paying tenants to the tenant site. Tenants
 on a trial subscription cannot enter."
 enabled="true">
 <actions>
 <changeSetting target="SurveyWorkers"
settingName="ThrottlingMode"
 value="ReduceSystemLoad" />
 <changeSetting target="TenantWebSite"
settingName="ThrottlingMode"
 value="ReduceSystemLoad" />
 </actions>
 <when>
 <all>
 <greaterOrEqual operand="TenantWeb_CPU_Avg_5m" than="90" />
 <greaterOrEqual operand="SurveyWorkers_CPU_Avg_5m" than="90" />
 </all>
 </when>
 </rule>
 <rule name="TenantWeb & Survey Worker - Burst - Stop throttling"
 description="When there is no burst in activity, then
 disable throttling."
 enabled="true">
 <actions>
 <changeSetting target="TenantWebSite" settingName="ThrottlingMode"
 value="Normal" />
 <changeSetting target="SurveyWorkers" settingName="ThrottlingMode"
 value="Normal" />
 </actions>
 <when>
 <any>
 <lessOrEqual operand="SurveyWorkers_CPU_Avg_5m" than="50" />
 <lessOrEqual operand="TenantWeb_CPU_Avg_5m" than="50" />
 </any>
 </when>
 </rule>
 ...
 </reactiveRules>
 ...
</rules>

 101making tailspin surveys more elastic

Tailspin Surveys Operands
In addition to using the built-in performance counter operands,
Tailspin created two custom operands, activeSurveysOperand and
tenantCountOperand, that enable it to use the number of surveys
with more than a specified number of answers in a rule and the number
of tenants.

XML
<rules ...>
 ...
 <operands>
 <roleInstanceCount alias="PublicWeb_InstanceCount_Last" timespan="00:08:00"
 aggregate="Last" role="PublicWebSite" />
 <performanceCounter alias="PublicWeb_AspNetRequestsRejected_Avg_10m"
 timespan="00:10:00" aggregate="Average" source="PublicWebSite"
 performanceCounterName="\ASP.NET\Requests Rejected" />
 <performanceCounter alias="PublicWeb_CPU_Avg_20m" timespan="00:20:00"
 aggregate="Average" source="PublicWebSite"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 <activeSurveysOperand alias="Tailspin_ActiveSurveyCount_Avg_10m"
 timespan="00:10:00" aggregate="Average" minNumberOfAnswers="0"
 xmlns="http://Tailspin/ActiveSurveys" />
 <tenantCountOperand alias="Tailspin_TenantCount_Avg_10m" timespan="00:10:00"
 aggregate="Average" xmlns="http://Tailspin/TenantCount" />
 <performanceCounter alias="TenantWeb_AspNetRequestsRejected_avg_10m"
 timespan="00:10:00" aggregate="Average" source="TenantWebSite"
 performanceCounterName="\ASP.NET\Requests Rejected" />
 <performanceCounter alias="TenantWeb_CPU_Avg_20m" timespan="00:20:00"
 aggregate="Average" source="TenantWebSite"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 <performanceCounter alias="SurveyWorkers_CPU_Avg_5m" timespan="00:05:00"
 aggregate="Average" source="SurveyWorkers"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 <performanceCounter alias="TenantWeb_CPU_Avg_5m" timespan="00:05:00"
 aggregate="Average" source="TenantWebSite"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 </operands>
</rules>

For more information about how Tailspin implemented the cus-
tom operands, see the section “Implementing Custom Operands” in
this chapter.

102 chapter five

Collecting Performance Counter Data
from Tailspin Surveys

The reactive rules that Tailspin uses for the Surveys application use
performance counter data from the public web role and worker role.
The Autoscaling Application Block expects to find this performance
counter data in the Windows Azure Diagnostics table named WAD
PerformanceCountersTable in Windows Azure storage. Tailspin
modified the public web and worker role in the Surveys application to
save the performance counter data that the application block uses to
evaluate the reactive rules.

The following code sample from the WebRole class in the Tail-
spin public web role configures the role to collect and save perfor-
mance counter data.

C#
...
using Microsoft.WindowsAzure;
using Microsoft.WindowsAzure.Diagnostics;
using Microsoft.WindowsAzure.ServiceRuntime;

public class WebRole : RoleEntryPoint
{
 public override bool OnStart()
{
var config =
 DiagnosticMonitor.GetDefaultInitialConfiguration();

 var cloudStorageAccount =
 CloudStorageAccount.Parse(
 RoleEnvironment.GetConfigurationSettingValue(
"Microsoft.WindowsAzure.Plugins.Diagnostics.
 ConnectionString"));

 // Get the perf counters
config.PerformanceCounters.ScheduledTransferPeriod =
 TimeSpan.FromMinutes(1);

 // Add the perf counters
 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
CounterSpecifier =
 @"\Processor(_Total)\% ProcessorTime",
 SampleRate = TimeSpan.FromSeconds(30)
 });

You must remember to
modify your application to
collect the performance
counter data that your
reactive rules use and to
transfer the performance
counter data to Windows
Azure storage.

 103making tailspin surveys more elastic

 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier = @"\Process(aspnet_wp)\% Processor Time",
 SampleRate = TimeSpan.FromSeconds(30)
 });
 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier = @"\Process(aspnet_wp)\Private Bytes",
 SampleRate = TimeSpan.FromSeconds(30)
 });
 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier =
 @"\Microsoft® .NET CLR Exceptions\# Exceps thrown / sec",
 SampleRate = TimeSpan.FromSeconds(30)
 });
 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier = @"\ASP.NET\Requests Rejected",
 SampleRate = TimeSpan.FromSeconds(30)
 });
 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier = @"\ASP.NET\Worker Process Restarts",
 SampleRate = TimeSpan.FromSeconds(30)
 });
 config.PerformanceCounters.DataSources.Add(
 new PerformanceCounterConfiguration
 {
 CounterSpecifier = @"\Memory\Available Mbytes",
 SampleRate = TimeSpan.FromSeconds(30)
 });

 // Diagnostics Infrastructure logs
 config.DiagnosticInfrastructureLogs.ScheduledTransferPeriod =
 System.TimeSpan.FromMinutes(1);
 config.DiagnosticInfrastructureLogs.ScheduledTransferLogLevelFilter =
 LogLevel.Verbose;

 // Windows Event Logs

104 chapter five

 config.WindowsEventLog.DataSources.Add(“System!*");
 config.WindowsEventLog.DataSources.Add(“Application!*");
config.WindowsEventLog.ScheduledTransferPeriod =
 TimeSpan.FromMinutes(1);
config.WindowsEventLog.ScheduledTransferLogLevelFilter =
 LogLevel.Warning;

 // Azure Trace Logs
config.Logs.ScheduledTransferPeriod =
 TimeSpan.FromMinutes(1);
config.Logs.ScheduledTransferLogLevelFilter =
 LogLevel.Warning;

 // Crash Dumps
 CrashDumps.EnableCollection(true);

 // IIS Logs
config.Directories.ScheduledTransferPeriod =
 TimeSpan.FromMinutes(10);

 DiagnosticMonitor diagMonitor =
 DiagnosticMonitor.Start(cloudStorageAccount, config);

 return base.OnStart();
 }
}

The Microsoft.WindowsAzure.Plugins.Diagnostics.Connection
String setting in the configuration file (.cscfg) determines the Win-
dows Azure storage account to use for the performance counter data.

This must be the same storage account
that Tailspin configures for the data-
PointsStoreAccount setting in the
Autoscaling Application Block
configuration.

 105making tailspin surveys more elastic

Implementing Throttling Behavior
Tailspin uses reactive rules to scale and throttle the Tailspin Surveys
application. To implement the throttling behavior, Tailspin modified
the Surveys application to change its behavior when a reactive rule
changes the throttling mode. The following code snippet shows ex-
ample reactive rules that request throttling actions in the Surveys
application. These two example rules assign values to the configura-
tion setting ThrottlingMode in Windows Azure roles.

XML
<rule name="TenantWeb & Survey Worker - Burst - Throttle"
 description="..."
 enabled="true">
 <actions>
<changeSetting target="SurveyWorkers"
 settingName="ThrottlingMode"
 value="ReduceSystemLoad" />
<changeSetting target="TenantWebSite"
 settingName="ThrottlingMode"
 value="ReduceSystemLoad" />
 </actions>
 <when>
 ...
 </when>
 <rank>0</rank>
 </rule>
<rule name="TenantWeb & Survey Worker - Burst – Stop
 throttling"
 description="..."
 enabled="true">
 <actions>
<changeSetting target="TenantWebSite"
 settingName="ThrottlingMode"
 value="Normal" />
<changeSetting target="SurveyWorkers"
 settingName="ThrottlingMode"
 value="Normal" />
 </actions>
 <when>
 ...
 </when>
 <rank>0</rank>
 </rule>

106 chapter five

These settings must exist in the target role service definitions.
The following snippet shows this in the Tailspin.Surveys.Cloud
service definition file (*.csdef).

XML
<WorkerRole name="Tailspin.Workers.Surveys">
 <ConfigurationSettings>
 ...
 <Setting name="ThrottlingMode" />
 </ConfigurationSettings>
 ...
 </WorkerRole>

The Surveys application uses the throttling mode value to change
the behavior of the application. For example, in the Tailspin Surveys
worker role the QueueHandler and BatchProcessingQueueHandler
classes check the value of the setting before processing any messages.
The following code sample shows how the TransferSurveysToSql
AzureCommand class checks the configuration setting.

C#
public bool CanRun
{
 get
 {
 return
 !this.configurationSettings.ConfigurationSettingEquals(
 AzureConstants.ConfigurationSettings.ThrottlingMode,
 "ReduceSystemLoad");
 }
}

The Tailspin tenant web role also uses the setting to inform users
when the application is being throttled. The Index.aspx file in the
Tailspin.Web.Areas.Survey.Views.Surveys folder reads the configu-
ration value, and the view then displays a message when the throttling
mode is set to ReduceSystemLoad.

 107making tailspin surveys more elastic

Editing and Saving Rules
This section describes how Tailspin built its web hosted autoscaling
rule editor so that it saves the rules to the correct location, ensures
that the rule definitions for the Surveys application comply with the
Autoscaling Application Block rules schema, and handles cross-valida-
tion with the Surveys application’s service information definition.

Discovering the Location of the Rules Store
To be able to load and save Tailspin Survey’s autoscaling rules to the
correct location, the application must read the Autoscaling Applica-
tion Block configuration from the web.config file of the web role that
hosts the application block. The following code sample from the
SharedContainerBootstrapper class in the Tailspin.Shared project
shows how this is done.

C#
private static IConfigurationFileAccess
CreateServiceInformationModelConfigurationFileAccess
 (IUnityContainer container)
{
 AutoscalingSettings settings =
 (AutoscalingSettings)ConfigurationManager
 .GetSection(“autoscalingConfiguration");

BlobServiceInformationStoreData serviceInformationStoreData =
 (BlobServiceInformationStoreData)settings
 .ServiceInformationStores
 .Get(settings.ServiceInformationStoreName);

return new BlobConfigurationFileAccess(
 new AzureStorageAccount(serviceInformationStoreData.
 StorageAccount),
 serviceInformationStoreData.BlobContainerName,
 serviceInformationStoreData.BlobName,
 serviceInformationStoreData.MonitoringRate,
 container.Resolve<ILogger>());
}

Reading and Writing to the Rules Store
The Autoscaling Application Block includes the RuleSetSerializer
class that uses instances of the RuleSetElement class to deserialize
from and serialize to the rules store. The LoadRuleSet and Save
CurrentRuleSet methods in the RuleSetModelStore class in the
AutoScaling/Rules folder in the Tailspin.Shared project illustrate
how the Surveys application uses the RuleSetSerializer class.

108 chapter five

C#
using
 Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.
 Rules.Configuration;
...
private readonly IConfigurationFileAccess fileAccess;
private readonly RuleSetModelToXmlElementConverter
 ruleSetModelToXmlElementConverter;
...
private RuleSetModel currentRuleSet;
private RuleSetSerializer serializer;
public RuleSetModelStore(
 RuleSetModelToXmlElementConverter
 ruleSetModelToXmlElementConverter,
 [Dependency(“RuleSetModel")] IConfigurationFileAccess
 fileAccess,
 RetryManager retryManager)
{
...
this.ruleSetModelToXmlElementConverter =
 ruleSetModelToXmlElementConverter;
this.fileAccess = fileAccess;

 this.CreateSerializer();

 this.LoadRuleSet();
}

private void CreateSerializer()
{
 var allExtensions = new IRuleSerializationExtension[]
 {
 new AssemblyRuleSerializationExtension(
 typeof(ActiveSurveysOperandElement).Assembly.FullName)
 };

 this.serializer = new RuleSetSerializer(
allExtensions.SelectMany(e => e.CustomActionDefinitions),
allExtensions.SelectMany(e =>
 e.CustomParameterDefinitions));
}

private void LoadRuleSet()
{
 string fileContent = this.GetFileContent();

 109making tailspin surveys more elastic

 RuleSetElement ruleSetElement;
 if (string.IsNullOrEmpty(fileContent))
 {
 ruleSetElement = new RuleSetElement();
 }
 else
 {
 ruleSetElement = this.serializer.Deserialize(new
 StringReader(fileContent));
 }

 this.currentRuleSet = this.ruleSetModelToXmlElementConverter
 .ConvertElementToModel(ruleSetElement);
}

...
public void SaveCurrentRuleSet()
{
 lock (this.syncRoot)
 {
 var writer = new StringWriter();
 RuleSetElement element =
 this.ruleSetModelToXmlElementConverter
 .ConvertModelToElement(this.currentRuleSet);
 this.serializer.Serialize(writer, element);
 this.SetFileContent(writer.ToString());
 }
}

Creating Valid Autoscaling Rules
Tailspin uses the classes in the Microsoft.Practices.Enterprise
Library.WindowsAzure.Autoscaling.Rules.Configuration
namespace in the Autoscaling Application Block to ensure that the
Surveys application rule editor creates autoscaling rules that are valid
according the autoscaling rules schema. For example, the Constraint
RuleToXmlElementConverter class converts between the Constraint
RuleModel class used by the Tailspin Surveys rule editor, and the
ConstraintRuleElement class that the Autoscaling Application Block
uses. For additional examples, see the other converter classes in the
Tailspin.Shared.AutoScaling.Rules.XmlElementConverters
namespace.

It is easier to bind the
Tailspin model classes
to the UI than to bind
the Autoscaling
Application Block
element classes to
the UI.

110 chapter five

Validating Target Names in the Rule Definitions
Target names in rule actions are aliases for roles and scale groups. The
source name of some operands in the rule definitions is also an alias
for a role. These aliases are defined in the service information defini-
tion for your application. In the rule editor in Tailspin Surveys, the text
box where the user enters the target name supports auto-completion
based on a list of role aliases and scale group names from the service
information definition. The following code sample from the _Con-
straintRuleActionEditor.cshtml file in the Tailspin.Web.Management
project shows how the UI element is constructed.

CSHTML
<tr>
 <td>@Html.HiddenFor(m => m.Id)@Html.EditorFor(m => m.Target,
 "_AutoComplete", new { @class = "targetTextBox",
 url = @Url.Action("GetTargets", “Home",
 new { Area = "ServiceInformation" }),
 placeholder =
 "{Target Name}" })@Html.ValidationMessageFor(m => m.Target)
 </td>
…
</tr>

The following code sample from the HomeController class in the
Tailspin.Web.Management.Areas.ServiceInformation.Controllers
namespace shows the GetTargets method that is invoked from the
view above.

C#
public ActionResult GetTargets()
{
 var roleAliasses =
 this.serviceInformationModelStore.GetAllRoles()
 .Select(r => r.Alias);
 var scaleGroups =
 this.serviceInformationModelStore
 .GetScaleGroups().Select(r => r.Alias);

 return this.Json(roleAliasses.Union(scaleGroups).Where
 (s => !string.IsNullOrEmpty(s)),
 JsonRequestBehavior.AllowGet);
}

 111making tailspin surveys more elastic

Editing and Saving the Service
Information

The implementation of the service information authoring features
described in this section is very similar to the implementation of the
rule editing and saving features in Tailspin Surveys.

The ServiceInformationModelStore class is responsible for dis-
covering the location of the service information store by querying the
application block’s configuration file and is also responsible for en-
abling the Surveys application to be able to read and write the service
information. The application block does not include a custom XML
serializer class for the service information, so the ServiceInformation
ModelStore class uses an XMLSerializer instance to handle the de-
serialization and serialization to XML.

The service information model classes in the Tailspin.Shared.
AutoScaling.ServiceInformation namespace provide their own con-
version to the element classes in the Autoscaling Application Block
Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling.
ServiceModel.Configuration namespace. Tailspin uses the element
classes in the block to ensure that the Surveys application creates a
valid service information XML document to save to the service infor-
mation store.

Visualizing the Autoscaling Actions
The operators at Tailspin want to be able to see the autoscaling op-
erations that have occurred in the Surveys application in order to help
them understand how the Autoscaling Application Block is working.
Tailspin has developed a number of visualization charts that plot the
number of role instances and show the maximum and minimum con-
straint values over time.

To create these charts, Tailspin needs information about the cur-
rent and recent number of role instances for all of the roles that the
block is managing as well as information about the maximum and
minimum constraint values that were in effect for the period shown
on the chart so that these can also be shown on the charts.

The Autoscaling Application Block records the number of role
instances for each of the Windows Azure roles that it is managing as
data points in the data points store. This store is a table in Windows
Azure storage.

Whenever the block evaluates its autoscaling rules, it writes a log
message that includes details of the maximum and minimum instance
counts that were permitted at the time the rules were evaluated and
details of the scaling action, if any, which were suggested by the reac-
tive rules.

112 chapter five

The following code sample from the GraphController class in the
Tailspin.Web.Management.Areas.Monitoring.Controllers namespace
shows how the management website retrieves the instance count
values from the data points store to plot on a chart.

C#
private void AddInstanceCountSeries(Chart chart,
 DateTimeFilter dateTimeFilter,
 string sourceName, string sourceAlias)
{
 IEnumerable<DataPoint> dataPoints = this.dataPointsStore.Get(
 sourceAlias,
 “RoleInstanceCount",
 “RoleInstanceCount",
 dateTimeFilter.GetEffectiveStartDate(),
 dateTimeFilter.GetEffectiveEndDate());

 Series series = chart.Series.Add(sourceName);
 series.ChartType = SeriesChartType.StepLine;
 series.ToolTip =
 "TimeStamp = #VALX{d} \n Number of instances = #VALY{d}";
 series.ChartArea = ChartArea;
 series.BorderWidth = 5;
 series.Color = this.GetRoleColor(sourceAlias);

 foreach (DataPoint dp in dataPoints)
 {
 series.Points.AddXY(dp.DataTimestamp.DateTime.
 ToLocalTime(), dp.Value);
 }

 if (!dataPoints.Any())
 {
 series.Name += “ (No matching datapoints found)";
 }

 AddEmptyStartEndPoints(series, dateTimeFilter);
 this.RememberMaximum(chart,
 dataPoints.MaxOrZero(m => m.Value));
}

In this example, the sourceName string is the name of the role,
and Tailspin uses a DateTimeFilter object to specify the range of data
points to retrieve. The Get method is provided by the AzureStorage
DataPointStore class in the Autoscaling Application Block.

 113making tailspin surveys more elastic

The following code sample from the GraphController class in the
Tailspin.Web.Management.Areas.Monitoring.Controllers namespace
shows how the management website retrieves the maximum and
minimum permitted instance count values from the data points store
to plot on a chart.

C#
private void AddMinMaxSeries(Chart chart, DateTimeFilter
 dateTimeFilter, string sourceName, string sourceAlias)
{
 IEnumerable<WADLogsTableEntity> minMaxLogMessages =
 this.logDataStore.Get(
 dateTimeFilter.GetEffectiveStartDate(),
 dateTimeFilter.GetEffectiveEndDate(),
 Constants.Scaling.Events.RequestForConfigurationChange);

 List<MinMaxInstanceCountDataPoint> minMaxLogMessagesForRole =
 minMaxLogMessages.SelectMany(
 l => this.CreateMinMaxModels(l, sourceAlias)).ToList();

 Series minSeries = chart.Series.Add(string.Empty);
 minSeries.ChartArea = ChartArea;
 minSeries.ChartType = SeriesChartType.StackedArea;
 minSeries.IsVisibleInLegend = false;
 minSeries.Color = Color.Transparent;

 foreach (MinMaxInstanceCountDataPoint minMaxLogMessage in
 minMaxLogMessagesForRole)
 {
 minSeries.Points.AddXY(
 minMaxLogMessage.EventDateTime.ToLocalTime(),
 minMaxLogMessage.MinInstanceCount);
 }

 Series maxSeries = chart.Series.Add("Minimum and Maximum
 instance count");
 maxSeries.ChartArea = ChartArea;
 maxSeries.ChartType = SeriesChartType.StackedArea;
 maxSeries.Color = Color.FromArgb(98, 0, 73, 255);
 // Transparent blue

 foreach (MinMaxInstanceCountDataPoint minMaxLogMessage in
 minMaxLogMessagesForRole)
 {
 var index = maxSeries.Points.AddXY(

114 chapter five

 var index = maxSeries.Points.AddXY(
 minMaxLogMessage.EventDateTime.ToLocalTime(),
 minMaxLogMessage.MaxInstanceCount –
 minMaxLogMessage.MinInstanceCount);
 maxSeries.Points[index].ToolTip = string.Format(
 "Min Instance Count = {0}\nMax Instance Count = {1}",
 minMaxLogMessage.MinInstanceCount,
 +minMaxLogMessage.MaxInstanceCount);
 }

 if (!minMaxLogMessagesForRole.Any())
 {
 minSeries.Name += “ (No matching datapoints found)";
 maxSeries.Name += “ (No matching datapoints found)";
 }

 this.RememberMaximum(chart,
 minMaxLogMessagesForRole.MaxOrZero(m =>
 m.MaxInstanceCount));
}

In this example, the sourceName string is again the name of the
role, and Tailspin again uses a DateTimeFilter object to specify the
range of data points to retrieve. In this example, Tailspin implemented
the Get method in the AzureStorageWadLogDataStore class in the
Tailspin.Web.Management.Areas.Monitoring.Models namespace.

To plot the charts, Tailspin used the ASP.NET charting controls to
enable clickable behavior. Users can click on the charts to discover
more detail about the data behind the points.

If you regularly purge old
log data from the Windows
Azure diagnostics log tables,
this will limit how far back
you can view this data on
the chart.

If you want to learn more about the way
that the Tailspin Surveys application
renders the charts, take a look at the
classes in the Tailspin.Web.Manage-
ment.Areas.Monitoring namespace.

 115making tailspin surveys more elastic

Implementing a Custom Action
This section describes how Tailspin implemented a custom action that
it can use alongside existing scaling actions to notify operators by an
SMS message when important scaling operations are taking place. The
Autoscaling Application Block provides an extension point for creat-
ing custom actions. Tailspin must also ensure that its rule editing UI
can load and save the custom action definitions to the rules store.

Integrating a Custom Action with the
Autoscaling Application Block

Actions are a part of reactive autoscaling rules that the application
block reads from its rules store. Tailspin uses the default blob XML
rules store, so Tailspin must provide a way for the application block to
deserialize its custom action from the XML document.

The following snippet shows how Tailspin might add a custom
action in the rules store.

Tailspin is currently not using this custom action.

XML
<reactiveRules>
 <rule ...>
 ...
 <actions>
 <smsAction xmlns="http://Tailspin/SendSMS"
 phoneNumber="+8888" message="Alert, reactive rule..."/>
 </actions>
 </rule>
</reactiveRules>

Tailspin first created the class shown in the following code sample
to perform the deserialization of the custom action from the XML
rules store. Notice how the attributes are used to identify the XML
element, attributes, and namespace.

C#
[XmlRoot(ElementName = "smsAction",
 Namespace = "http://Tailspin/SendSMS")]
public class SendSmsActionElement : ReactiveRuleActionElement
{
 [XmlAttribute(“phoneNumber")]
 public string PhoneNumber { get; set; }

 [XmlAttribute(“message")]
 public string Message { get; set; }

For Tailspin, adding a
custom action requires two
sets of related changes. The
first is to ensure that the
Autoscaling Application
Block knows about the
custom action, the second
is to ensure that the rule
editing UI knows about
the custom action.

If Tailspin operators
edited rules in an
XML editor, Tailspin
could add validation
and IntelliSense®
behavior to the
editor if it created
an XML schema for
the http://Tailspin/
SendSMS namespace.

116 chapter five

 public override ReactiveRuleAction CreateAction()
 {
 return new SendSmsAction
 {
 Message = this.Message,
 PhoneNumber = this.PhoneNumber
 };
 }
}

The CreateAction method returns a SendSmsAction instance
that performs the custom action. The following code snippet shows
the SendSmsAction class, which extends the ReactiveRuleAction
class.

C#
public class SendSmsAction : ReactiveRuleAction
{

 public SendSmsAction()
 {
 }

 public string PhoneNumber { get; set; }

 public string Message { get; set; }

 public override IEnumerable<RuleEvaluationResult> GetResults(
 ReactiveRule forRule, IRuleEvaluationContext context)
 {
 return new[]
 {
 new SendSmsActionResult(forRule)
 {
 Message = this.Message,
 PhoneNumber = this.PhoneNumber
 }
 };
 }
}

The rules evaluator in the block calls the GetResults method of
all the actions for the current rule, and then calls the Execute method
on each RuleEvaluationResult object that is returned. The following
code snippet shows the SendSmsActionResult class (the Execute
ActionResult class extends the RuleEvaluationResult class).

 117making tailspin surveys more elastic

C#
public class SendSmsActionResult : ExecuteActionResult
{
 private readonly ISmsSender smsSender;

 public SendSmsActionResult(Rule sourceRule)
 : base(sourceRule)
 {
 this.smsSender =
 EnterpriseLibraryContainer.Current.GetInstance<ISmsSender>();
 }

 public string PhoneNumber { get; set; }

 public string Message { get; set; }

 public override string Description
 {
 get
 {
 return string.Format("Sends an SMS to number: '{0}'
 with message: '{1}'", this.PhoneNumber, this.Message);
 }
 }

 public override void Execute(IRuleEvaluationContext context)
 {
 this.smsSender.Send(this.PhoneNumber, this.Message);
 }
}

The block uses the Description property when it logs the sending
of the SMS message.

Finally, Tailspin used the Enterprise Library configuration tool to
tell the Autoscaling Application Block about the custom action.

XML
<autoscalingConfiguration ... >
 ...
 <rulesStores>
 <add name="Blob Rules Store" type=... >
 <extensionAssemblies>
 <add name="Tailspin.Shared" />
 </extensionAssemblies>
 </add>

If you throw an
exception in the
Execute method
it must be of type
ActionExecution
Exception.

118 chapter five

 </rulesStores>
 ...
</autoscalingConfiguration>

The extensionAssemblies element adds the name of the assem-
bly that contains the classes that define the custom action.

Integrating a Custom Action with the
Tailspin Surveys Rule Editor

The Tailspin Surveys rule editor allows administrators to edit the au-
toscaling rules for the Surveys application in a web UI. This editor can
read and save rule definitions to the rules store that the Autoscaling
Application Block uses. The block treats the rules store as a read-only
store, but the block includes a RuleSetSerializer class, which provides
support for saving rule definitions to the store.

Tailspin configures the RuleSetSerializer instance that the rule
editor uses with the details of the custom action and operand. The
following code snippet from the RuleSetModelStore class shows
how the two extensions (the custom action and operand) are loaded.

C#
private RuleSetSerializer serializer;

public RuleSetModelStore(RuleSetModelToXmlElementConverter
 ruleSetModelToXmlElementConverter,
 [Dependency("RuleSetModel")] IConfigurationFileAccess
 fileAccess, RetryManager retryManager)
{
 ...
 this.CreateSerializer();
 ...
}

private void CreateSerializer()
{
 var allExtensions = new IRuleSerializationExtension[]
 {
 new AssemblyRuleSerializationExtension(
 typeof(ActiveSurveysOperandElement).Assembly.FullName)
 };
 this.serializer = new RuleSetSerializer(
 allExtensions.SelectMany(e => e.CustomActionDefinitions),
 allExtensions.SelectMany(e => e.CustomParameterDefinitions));
}

The example loads the
assembly containing the
custom ActiveSur-
veysOperandElement class.
This assembly also contains
the custom SendSmsActio-
nElement class. The
extension is loaded explicitly
in code, because the
management website is not
hosting the Autoscaling
Application Block and so
cannot use the configura-
tion setting to load it.

 119making tailspin surveys more elastic

After the extensions are added to the serializer, the rules editor
can load and save rules that include the custom actions and operands
that Tailspin has created.

You do not need to load the assembly that contains your exten-
sions programmatically in the project that hosts the Autoscaling Ap-
plication Block because the application block already contains code
that will load extension assemblies based on the entries in the auto
scalingConfiguration section of the configuration file. In the Tailspin
Surveys solution, the Tailspin.Workers.Autoscaling worker role
hosts the Autoscaling Application Block and thus loads the extensions
automatically; however, the Tailspin.Web.Management web role
(which does not host the Autoscaling Application Block) must load
the extensions programmatically.

Implementing Custom Operands
The process for creating a custom operand is very similar to the pro-
cess for creating a custom action. Tailspin implemented two custom
operands that enable the rules to use the number of active surveys
and the current number of tenants as metrics in a reactive rule.

The Autoscaling Application Block provides an extension point
for creating custom operands. Tailspin must also ensure that its rule
editing UI can load and save the custom operands to the rules store.

Integrating a Custom Operand with the
Autoscaling Application Block

Operands are a part of reactive autoscaling rules that the application
block reads from its rules store. Tailspin uses the default blob XML
rules store, so Tailspin must provide a way for the application block to
deserialize its custom operand from the XML document.

The following snippet shows an example of Tailspin’s active
SurveysOperand custom operand in the rules store.

XML
<operands>
 ...
 <activeSurveysOperand
 alias="Tailspin_ActiveSurveyCount_Avg_10m"
 timespan="00:10:00"
 aggregate="Average"
 minNumberOfAnswers="0"
 xmlns="http://Tailspin/ActiveSurveys" />
 ...
</operands>

For a custom action, you
must extend the Reactive
RuleAction and Execute
ActionResult classes; for a
custom operand, you must
provide an implementation
of the IDataPoints
Collector interface.

120 chapter five

Tailspin first created the class shown in the following code sample
to perform the deserialization of the activeSurveysOperand custom
operand from the XML rules store. Notice how the attributes are
used to identify the XML element, attributes, and namespace.

C#
[XmlRoot(ElementName = “activeSurveysOperand",
 Namespace = “http://Tailspin/ActiveSurveys")]
public class ActiveSurveysOperandElement :
 DataPointsParameterElement
{
 [XmlAttribute(“minNumberOfAnswers")]
 public int MinNumberOfAnswers(get; set; }

 protected override string DataPointName
 {
 get
 {
 return this.DataPointType;
 }
 }

 protected override string DataPointType
 {
 get
 {
 return “Number of Active Surveys";
 }
 }

 protected override string SourceName
 {
 get
 {
 return “Tailspin";
 }
 }

If Tailspin operators
edited rules in an
XML editor, Tailspin
could add validation
and IntelliSense
behavior to the editor
if it created XML
schemas for the
http://Tailspin/
ActiveSurveys and
http://Tailspin/
TenantCount
namespaces.

 121making tailspin surveys more elastic

 protected override Func<IServiceInformationStore,
 IEnumerable<IDataPointsCollector>> GetCollectorsFactory()
 {
 var samplingRate = ActiveSurveysDataPointsCollector
 .DefaultPerformanceCounterSamplingRate;
 return (sis) =>
 new[]
 {
 new ActiveSurveysDataPointsCollector(
 EnterpriseLibraryContainer.Current
 .GetInstance<ISurveyStore>(),
 EnterpriseLibraryContainer.Current
 .GetInstance<ISurveyAnswersSummaryStore>(),
 samplingRate,
 this.MinNumberOfAnswers,
 this.SourceName,
 this.DataPointType,
 this.DataPointName)
 };

 }
}

The MinNumberOfAnswers property defines an optional attri-
bute that Tailspin uses to filter the list of surveys that it is counting.
For example, if Tailspin sets the minNumberOfAnswers attribute of
the operand to 5000, then the activeSurveysOperand will only count
surveys that currently have at least 5000 answers collected.

The GetCollectorsFactory method instantiates an Active
SurveysDataPointsCollector object that performs the custom data
collection operation. The following code snippet shows the Active
SurveysDataPointsCollector class, which implements the IData
PointsCollector interface. This class is responsible for collecting the
data points. The Collect method uses the FilterSurveys method to
retrieve only surveys that have at least the minimum number of an-
swers specified by the minNumberOfAnswers attribute in the rules
store.

122 chapter five

C#
public class ActiveSurveysDataPointsCollector : IDataPointsCollector
{

 private readonly ISurveyStore surveyStore;

 private readonly ISurveyAnswersSummaryStore surveyAnswersSummaryStore;

 private readonly TimeSpan samplingRate;

 private readonly int minimumNumberOfAnswers;

 private readonly string sourceName;

 private readonly string dataPointType;

 private readonly string dataPointName;

 public ActiveSurveysDataPointsCollector(ISurveyStore surveyStore,
 ISurveyAnswersSummaryStore surveyAnswersSummaryStore,
 TimeSpan samplingRate, int minNumberOfAnswers, string sourceName, string
 dataPointType, string dataPointName)
 {
 this.surveyStore = surveyStore;
 this.surveyAnswersSummaryStore = surveyAnswersSummaryStore;
 this.samplingRate = samplingRate;
 this.minimumNumberOfAnswers = minNumberOfAnswers;
 this.sourceName = sourceName;
 this.dataPointType = dataPointType;
 this.dataPointName = dataPointName;
 }

 public static TimeSpan DefaultPerformanceCounterSamplingRate
 {
 get { return TimeSpan.FromMinutes(2); }
 }

 public TimeSpan SamplingRate
 {
 get { return this.samplingRate; }
 }

 public string Key
 {
 get { return string.Format(CultureInfo.InvariantCulture,
 “{0}|{1}", this.minimumNumberOfAnswers, this.samplingRate); }

 123making tailspin surveys more elastic

 }

 public IEnumerable<DataPoint> Collect(DateTimeOffset collectionTime)
 {
 IEnumerable<Survey> surveys;
 try
 {
 surveys = this.surveyStore.GetActiveSurveys(FilterSurveys).ToList();
 }
 catch (StorageClientException ex)
 {
 throw new DataPointsCollectionException(
 “Could not retrieve surveys", ex);
 }

 return new[]
 {
 new DataPoint
 {
 CreationTime = collectionTime,
 Source = this.sourceName,
 Type = this.dataPointType,
 Name = this.dataPointName,
 Value = surveys.Count(),
 DataTimestamp = collectionTime
 }
 };
 }

 private bool FilterSurveys(string tenantname, string slugname)
 {
 if (this.minimumNumberOfAnswers == 0)
 {
 return true;
 }
 var answersSummary =
 this.surveyAnswersSummaryStore.GetSurveyAnswersSummary(
 tenantname, slugname);
 if (answersSummary == null)
 {
 return false;
 }
 return answersSummary.TotalAnswers > this.minimumNumberOfAnswers;
 }
}

124 chapter five

Finally, Tailspin used the Enterprise Library configuration tool to
tell the Autoscaling Application Block about the custom action. Be-
cause the custom operand and custom action are in the same assem-
bly, there is only a single entry in the extensionAssemblies element.

XML
<autoscalingConfiguration ... >
 ...
 <rulesStores>
 <add name="Blob Rules Store" type=... >
 <extensionAssemblies>
 <add name="Tailspin.Shared" />
 </extensionAssemblies>
 </add>
 </rulesStores>
 ...
</autoscalingConfiguration>

Integrating a Custom Operand with the Tailspin Surveys
Rule Editor

This is done in exactly the same way as integrating the custom action
with the rules editor. Because the custom operand and custom action
are in the same assembly, the CreateSerializer method in the Rule
SetModelStore class only adds a single extension assembly.

Configuring Logging in Tailspin Surveys
The Autoscaling Application Block allows you to choose between
logging implementations. Because the Autoscaling Application Block
is hosted in a Windows Azure worker role and Tailspin does not re-
quire any of the additional features offered by the Enterprise Library
Logging Application Block, Tailspin uses the logging infrastructure
defined in the System.Diagnostics namespace. The following snippet
from the configuration for the Windows Azure worker role that hosts
the Autoscaling Application Block shows the logging configuration
for Tailspin Surveys. The autoscalingConfiguration section selects
the system diagnostics logging infrastructure for the Autoscaling Ap-
plication Block, and the system.diagnostics section configures the
logging sources for the log messages from the block.

Notice how the
Collect method can
throw an exception
of type DataPoints
CollectionException.
Any exceptions
thrown in this
method must be
of this type.

 125making tailspin surveys more elastic

XML
<autoscalingConfiguration loggerName="Source Logger" ...>
 <loggers>
 <add name="Source Logger" type="Microsoft.Practices.EnterpriseLibrary
 .WindowsAzure.Autoscaling.Logging.SystemDiagnosticsLogger,
 Microsoft.Practices.EnterpriseLibrary.WindowsAzure.Autoscaling />
 </loggers>
 ...
</autoscalingConfiguration>
...
<system.diagnostics>
 <sources>
 <source name="Autoscaling General" switchValue="All">
 <listeners>
 <add name="AzureDiag" />
 <remove name="Default" />
 </listeners>
 </source>
 <source name="Autoscaling Updates" switchValue="All">
 <listeners>
 <add name="AzureDiag" />
 <remove name="Default" />
 </listeners>
 </source>
 </sources>
 <sharedListeners>
 <add type="Microsoft.WindowsAzure.Diagnostics.DiagnosticMonitorTraceListener,
 Microsoft.WindowsAzure.Diagnostics, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 name="AzureDiag"/>
 </sharedListeners>
 <trace>
 <listeners>
 <add type="Microsoft.WindowsAzure.Diagnostics.DiagnosticMonitorTraceListener,
 Microsoft.WindowsAzure.Diagnostics, Version=1.0.0.0, Culture=neutral,
 PublicKeyToken=31bf3856ad364e35"
 name="AzureDiagnostics">
 <filter type="" />
 </add>
 </listeners>
 </trace>
</system.diagnostics>

The values of the type attributes are shown split over multiple
lines. The configuration file should not contain any line breaks.

126 chapter five

Setup and Physical Deployment
This section discusses considerations you should take into account
when deploying the Tailspin Surveys application.

Certificates and Tailspin Surveys
Deployment

When you deploy the Tailspin Surveys application you must also de-
ploy a number of certificates. This section describes the role of the
certificates, where they are deployed, and how to obtain or generate
suitable certificates. This section focuses on the certificates used di-
rectly by Tailspin Surveys and the Autoscaling Application Block.
For more information about the certificates used by the simulated
issuers that handle claims-based identity management, see the guide
“Developing Applications for the Cloud” on MSDN.

When you deploy the Tailspin Surveys application, there are two
certificates that you must deploy. One certificate enables Tailspin
Surveys to use an HTTPS endpoint, and the other certificate is used
by the Autoscaling Application Block to make Windows Azure
Service Management API calls to the Tailspin Surveys hosted service.
The block uses these API calls to collect data from Tailspin Surveys
and to make scaling requests.

Deploying a Service Certificate to Enable SSL
The Dependency Checker tool that you use to install the Tailspin
Surveys solution on your local development machine includes a sample
localhost certificate that you can use to enable HTTPS when you
deploy the Surveys application to Windows Azure. Both the Tailspin
Surveys tenant website and management website use HTTPS end-
points. The following snippet from the service definition file (.csdef)
for the Tailspin.Web role shows the certificate and endpoint defini-
tions.

XML
<WebRole name="Tailspin.Web" ...>
 ...
 <Certificates>
 <Certificate name="localhost_ssl"
 storeLocation="LocalMachine"
 storeName="My" />
 </Certificates>
 <Endpoints>
 <InputEndpoint name="HttpsIn" protocol="https" port="443"
 certificate="localhost_ssl" />
 </Endpoints>
 ...
</WebRole>

http://msdn.microsoft.com/en-us/library/ff966499.aspx

 127making tailspin surveys more elastic

The service configuration file identifies the certificate to use by
its thumbprint.

The localhost certificate included with the Tailspin Surveys
solution is for demonstration purposes only and should not be
used in a production environment.

You must upload the service certificate you plan to use to secure
your HTTPS endpoints to the certificate store in your Windows
Azure portal and to ensure that the thumbprint of the certificate that
you upload matches the thumbprint in the service configuration file
(.cscfg).

For more information about obtaining an SSL certificate, see
“How to Obtain an SSL Certificate.”

For more information about configuring HTTPS endpoints in
Windows Azure web roles, see “How to Configure an SSL Certificate on
an HTTPS Endpoint.”

Deploying the Management Certificate
to Enable Scaling Operations

In the Tailspin Surveys application, the Autoscaling Application Block
is hosted in a separate worker role from the main Surveys application.
The Autoscaling Application Block uses the Windows Azure Service
Management API to perform scaling actions on the Tailspin Surveys
roles, and this API is secured using a management certificate. This
section describes how Tailspin created and deployed this management
certificate.

Tailspin uses a standard X.509 v3 certificate with a key length of
2048 bits for the management certificate. To generate this self-signed
certificate, Tailspin ran the following command in the Visual Studio
command prompt window to create the certificate and install it in the
local certificate store.

makecert -r -pe -n “CN= Tailspin Management Certificate” -b
05/10/2010 -e 12/22/2012 -ss my -sr localmachine -sky exchange
-sp “Microsoft RSA SChannel Cryptographic Provider” -sy 12

Tailspin then uploaded the public key to the Management
Certificates folder in the Windows Azure subscription that hosts the
Tailspin Surveys application, and the private key to the Service
Certificates folder in the hosted service that hosts the Autoscaling
Application Block. This enables the Autoscaling Application Block to
secure the Windows Azure Service Management API calls that it
makes to the subscription that hosts the Tailspin Surveys application.

For more information on management and service certificates in
Windows Azure, see “Managing Certificates in Windows Azure.”

You can use the Certificates
snap-in in the Microsoft
Management Console
(MMC) to export a file that
contains the public key (.cer)
and a file that contains the
private key (.pfx).

http://go.microsoft.com/fwlink/?LinkID=234634
http://go.microsoft.com/fwlink/?LinkID=234623
http://go.microsoft.com/fwlink/?LinkID=234623
http://go.microsoft.com/fwlink/?LinkID=234616

128 chapter five

Deploying Tailspin Surveys in Multiple
Geographic Locations

The sample version of the Tailspin Surveys application is designed to
deploy to a single data center where the Autoscaling Application
Block can scale the application in and out by adding and removing role
instances. This represents the first phase of Tailspin’s plan to roll out
autoscaling to all the locations where the Tailspin Surveys application
is currently deployed; these locations are the North Central US Data
Center, the West Europe Data Center, and the Southeast Asia Data
Center. Tailspin wants to be able to manage the autoscaling behavior
in all the data centers from a single, centralized management applica-
tion.

Figure 2 shows the current architecture in the sample solution in
which Tailspin uses the Autoscaling Application Block to manage the
Surveys application in a single data center.

figure 2
Tailspin Surveys deployed to a single data center

 129making tailspin surveys more elastic

Although Tailspin could use the same architecture in the other
data centers, this would mean that each data center has its own man-
agement website. Tailspin wants to use a single management website
to gain a consolidated view of the complete autoscaling infrastructure
of the Tailspin Surveys application.

Tailspin considered two alternative architectures for its autoscal-
ing infrastructure. Figure 3 shows the first alternative where the Au-
toscaling Application Block and management web application are
hosted in the US data center.

figure 3
Option 1: deploying the Autoscaling Application Block centrally

Figure 4 shows the second alternative, in which the Autoscaling
Application Block is deployed in each data center and the manage-
ment web application is still deployed in the US data center.

130 chapter five

figure 4
Option 2: deploying the Autoscaling Application Block in each data center

Both of these alternatives achieve Tailspin’s goal of managing the
autoscaling infrastructure from a central management application, but
there are a number of trade-offs to consider between the two alterna-
tives. Some of these trade-offs are summarized below.

Data Transfer Costs
Although both alternatives will involve data transfers from the remote
data centers to the US data center, in option 1, all of the performance
counter metrics that the application block collects from the Windows
Azure diagnostics tables is transferred to the US data center and
stored in the data points store. In option 2, all of the performance
counter data is stored in a local data points store. However, any met-
ric data that the management application uses for displaying charts
and reports still has to be brought over the network.

 131making tailspin surveys more elastic

Tailspin anticipates that the data transfer costs will be lower if it
adopts option 2. Option 2 will also reduce the time taken to transfer
data to the data points store and minimize the risk of any transient
network conditions impacting on the autoscaling process.

Role Instances
Both alternatives need only a single role instance for the management
application. Tailspin does not anticipate heavy usage of this applica-
tion, so it can use a small instance.

In option 1, there is a single instance of the worker role that hosts
the Autoscaling Application Block running in the US data center.
Tailspin estimates that it can use either a small or medium-sized role
instance in this scenario.

In option 2, there is a single instance of the worker role that hosts
the Autoscaling Application Block running in each data center. Tail-
spin estimates that it can use a small role instance for this worker role
in each data center.

Option 2 will use more role instances than option 1.

Configuration Differences
Option 1 stores all the service information and autoscaling rules in
stores in the US data center. If Tailspin is to use different rules in each
data center it must be careful to adopt naming conventions to refer
to the roles in the different data centers, and the rules and operands
that apply to those roles. With option 2, each data center has its own
rules store and service information.

In both cases, it is possible to use different rules in each data
center if the autoscaling requirements differ. With option 1, Tailspin
must take more care to make the rules manageable by adopting suit-
able naming conventions.

Application Differences
The existing management web application will work unchanged with
option 1 as it is designed to work with a single service information
store and a single rules store. It would not be too difficult for Tailspin
to enhance the management website to work with multiple informa-
tion stores and rules stores as required by option 2.

The existing custom operands will not work with option 1 be-
cause they are not designed to work with multiple instances of the
Tailspin Surveys application; there is currently no way to configure
them to collect data from a specific instance of the Surveys applica-
tion. The custom operands will work unchanged with option 2 be-
cause each instance of the Autoscaling Application Block manages a
single instance of Tailspin Surveys.

You can use Windows Azure
storage analytics to gain
deeper insight into your
data usage. For more
information, see “Storage
Analytics Overview.”

Tailspin plans to use
only single instances
of the autoscaling
roles because it does
not require the
Windows Azure SLA
guarantees for these
roles.

http://go.microsoft.com/fwlink/?LinkID=234635
http://go.microsoft.com/fwlink/?LinkID=234635

132 chapter five

Tailspin has decided to go ahead and implement option 2. In this
model, each data center is self-contained with the Tailspin Surveys
application and the Autoscaling Application Block. This makes it eas-
ier for Tailspin to manage the different autoscaling requirements of
each application block, and minimizes the quantity of data that is
moved between data centers. Tailspin will enhance the web-based
autoscaling management application to support this scenario.

More Information
For more information about autoscaling and how the Autoscaling
Application Block works, see Chapter 4, “Autoscaling and Windows
Azure,” in this guide.
For instructions about how to install the Tailspin Surveys application,
see Appendix B, “Tailspin Surveys Installation Guide.”
For more information about the certificates used by the simulated
issuers that handle claims-based identity management, see the guide
Developing Applications for the Cloud, 2nd Edition on MSDN:
http://msdn.microsoft.com/en-us/library/ff966499.aspx
For more information about the CloudStorageAccount.Set
ConfigurationSettingPublisher method, see CloudStorage
Account.SetConfigurationSettingPublisher Method on MSDN:
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.
cloudstorageaccount.setconfigurationsettingpublisher.aspx
For more information about obtaining an SSL certificate,
see
“How to Obtain an SSL Certificate” on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234634
For more information about configuring HTTPS endpoints in
Windows Azure web roles, see “How to Configure an SSL
Certificate on an HTTPS Endpoint” on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234623
For more information on management and service certificates in
Windows Azure, see “Managing Certificates in Windows Azure”
on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234616
You can use Windows Azure storage analytics to gain deeper insight
into your data usage. For more information, see “Storage Analytics
Overview” on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234635
To access web resources more easily, see the online version of the
bibliography on MSDN:
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

http://msdn.microsoft.com/en-us/library/ff966499.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.cloudstorageaccount.setconfigurationsettingpublisher.aspx
http://msdn.microsoft.com/en-us/library/microsoft.windowsazure.cloudstorageaccount.setconfigurationsettingpublisher.aspx
http://go.microsoft.com/fwlink/?LinkID=234634
http://go.microsoft.com/fwlink/?LinkID=234623
http://go.microsoft.com/fwlink/?LinkID=234616
http://go.microsoft.com/fwlink/?LinkID=234635
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

 133

What Are Transient Faults?
When cloud-based applications use other cloud-based services, errors
can occur because of temporary conditions such as intermittent ser-
vice, infrastructure-level faults, or network issues. Very often, if you
retry the operation a short time later (maybe only a few milliseconds
later) the operation may succeed. These types of error conditions are
referred to as transient faults. Transient faults typically occur very
infrequently, and in most cases, only a few retries are necessary for
the operation to succeed.

Unfortunately, there is no easy way to distinguish transient from
non-transient faults; both would most likely result in exceptions being
raised in your application. If you retry the operation that causes a
non-transient fault (for example a “file not found” error), you most
likely get the same exception raised again.

For example, with SQL Azure™ technology platform, one of the
important considerations is how you should handle client connec-
tions. This is because SQL Azure can use throttling when a client at-
tempts to establish connections to a database or run queries against
it. SQL Azure throttles the number of database connections for a
variety of reasons, such as excessive resource usage, long-running
transactions, and possible failover and load balancing actions. This can
lead to the termination of existing client sessions or the temporary
inability to establish new connections while the transient conditions
persist. SQL Azure can also drop database connections for a variety
of reasons related to network connectivity between the client and
the remote Microsoft data center: quality of network, intermittent
network faults in the client’s LAN or WAN infrastructure and other
transient technical reasons.

6 Transient Fault Handling

There is no intrinsic way to
distinguish between transient
and non-transient faults
unless the developer of the
service explicitly isolated
transient faults into a
specified subset of exception
types or error codes.

Throttling can occur
with Windows Azure™
technology platform
storage if your client
exceeds the scalability
targets. For more
information, see
“Windows Azure Storage
Abstractions and their
Scalability Targets.”

http://go.microsoft.com/fwlink/?LinkID=234633
http://go.microsoft.com/fwlink/?LinkID=234633
http://go.microsoft.com/fwlink/?LinkID=234633

134 chapter six

What Is the Transient Fault Handling
Application Block?

The Transient Fault Handling Application Block makes your applica-
tion more robust by providing the logic for handling transient faults.
It does this in two ways.

First, the block includes logic to identify transient faults for a
number of common cloud-based services in the form of detection
strategies. These detection strategies contain built-in knowledge that
is capable of identifying whether a particular exception is likely to be
caused by a transient fault condition.

The block includes detection strategies for the following services:
•	 SQL Azure
•	 Windows Azure Service Bus
•	 Windows Azure Storage Service
•	 Windows Azure Caching Service

Second, the application block enables you to define your retry
strategies so that you can follow a consistent approach to handling
transient faults in your applications. The specific retry strategy you
use will depend on several factors; for example, how aggressively you
want your application to perform retries, and how the service typi-
cally behaves when you perform retries. Some services can further
throttle or even block client applications that retry too aggressively.
A retry strategy defines how many retries you want to make before
you decide that the fault is not transient, and what the intervals
should be between the retries.

The built-in retry strategies allow you to specify that retries
should happen at fixed intervals, at intervals that increase by the same
amount each time, and at intervals that increase exponentially but
with some random variation. The following table shows examples of
all three strategies.

Retry strategy Example (intervals between retries in seconds)

Fixed interval 2,2,2,2,2,2

Incremental intervals 2,4,6,8,10,12

Random exponential back off
intervals

2, 3.755, 9.176, 14.306, 31.895

All retry strategies specify a maximum number of retries after
which the original exception is allowed to bubble up to your
application.

In many cases, you should use the random exponential back-off
strategy to gracefully back off the load on the service. This is espe-
cially true if the service is throttling client requests.

This kind of retry
logic is also known
as “conditional retry”
logic.

Determining which
exceptions are the result of
transient faults for a service
requires detailed knowledge
of and experience using the
service. The block encapsu-
lates this kind of knowledge
and experience for you.

 135tr ansient fault handling

You can define your own custom detection strategies if the built-
in detection strategies included with the application block do not
meet your requirements. The application block also allows you to
define your own custom retry strategies that define additional pat-
terns for retry intervals.

Figure 1 illustrates how the key elements of the Transient Fault
Handling Application Block work together to enable you to add the
retry logic to your application.

figure 1
The Transient Fault Handling Application Block

A retry policy combines a detection strategy with a retry strategy.
You can then use one of the overloaded versions of the Execute
Action method to wrap the call that your application makes to one of
the services.

Historical Note
The Transient Fault Handling Application Block is a product of the
collaboration between the Microsoft patterns & practices team and the
Windows Azure Customer Advisory Team. It is based on the initial detec-
tion and retry strategies, and the data access support from the “Tran-
sient Fault Handling Framework for SQL Azure, Windows Azure Storage,
Service Bus & Cache.” The new application block now includes en-
hanced configuration support, enhanced support for wrapping asyn-
chronous calls, provides integration of the application block’s retry
strategies with the Windows Azure storage retry mechanism, and
works with the Enterprise Library dependency injection container.
The new Transient Fault Handling Application Block supersedes the
Transient Fault Handling Framework and is now the recommended
approach to handling transient faults in Windows Azure applications.

High throughput
applications should typically
use an exponential back-off
strategy. However, for
user-facing applications
such as websites you may
want to consider a linear
back-off strategy to
maintain the responsiveness
of the UI.

You must select the
appropriate detection
strategy for the service
whose method you are
calling from your Windows
Azure application.

http://msdn.microsoft.com/practices
http://windowsazurecat.com/index.php
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/

136 chapter six

Using the Transient Fault Handling
Application Block

This section describes, at a high-level, how to use the Transient Fault
Handling Application Block. It is divided into the following main sub-
sections. The order of these sections reflects the order in which you
would typically perform the associated tasks.
•	 Adding the Transient Fault Handling Application Block to

your Visual Studio Project. This section describes how you can
prepare your Microsoft Visual Studio® development system
solution to use the block.

•	 Defining a retry strategy. This section describes the ways that
you can define a retry strategy in your application.

•	 Defining a retry policy. This section describes how you can
define a retry policy in your application.

•	 Executing an operation with a retry policy. This section
describes how to execute actions with a retry policy to handle
any transient faults.

A retry policy is the combination of a retry strategy and a
detection strategy. You use a retry policy when you execute
an operation that may be affected by transient faults.

For more examples of how you can use the Transient Fault Han-
dling Application Block in your Windows Azure application, see
Chapter 7, “Making Tailspin Surveys More Resilient.”

For detailed information about configuring the Transient Fault
Handling Application Block and writing code that uses the Transient
Fault Handling Application Block, see the topic “The Transient Fault
Handling Application Block” on MSDN®.

Adding the Transient Fault Handling
Application Block to Your
Visual Studio Project

As a developer, before you can write any code that uses the Transient
Fault Handling Application Block, you must configure your Visual
Studio project with all of the necessary assemblies, references, and
other resources that you’ll need. For information about how you can
use NuGet to prepare your Visual Studio project to work with the
Transient Fault Handling Application Block, see the topic “Adding the
Transient Fault Handling Application Block to your Solution” on MSDN.

NuGet makes it
very easy for you
to configure your
project with all of
the prerequisites for
using the Transient
Fault Handling
Application Block.

http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680891(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680891(v=PandP.50).aspx

 137tr ansient fault handling

Instantiating the Transient Fault
Handling Application Block Objects

There are two basic approaches to instantiating the objects from the
application block that your application requires. In the first approach,
you can explicitly instantiate all the objects in code, as shown in the
following code snippet:

C#
var retryStrategy = new Incremental(5, TimeSpan.FromSeconds(1),
 TimeSpan.FromSeconds(2));

var retryPolicy =
new RetryPolicy<StorageTransientErrorDetectionStrategy>
 (retryStrategy);

If you instantiate the RetryPolicy object using new, you cannot
use the default strategies defined in the configuration.

In the second approach, you can use the Enterprise Library infra-
structure to instantiate and manage the objects for you as shown in
the following code snippet:

C#
var retryManager = EnterpriseLibraryContainer.Current
 .GetInstance<RetryManager>();

var retryPolicy = retryManager.GetRetryPolicy
 <StorageTransientErrorDetectionStrategy>("Incremental Retry
 Strategy");

There is an additional approach that is provided for backward
compatibility with the “Transient Fault Handling Application Frame-
work” that uses the RetryPolicyFactory class:

C#
var retryPolicy = RetryPolicyFactory.GetRetryPolicy
 <StorageTransientErrorDetectionStrategy>("Incremental Retry
 Strategy");

Defining a Retry Strategy
There are three considerations in defining retry strategies for your
application: which retry strategy to use, where to define the retry
strategy, and whether to use default retry strategies.

In most cases, you should use one of the built-in retry strategies:
fixed interval, incremental, or random exponential back off. You con-
figure each of these strategies using custom sets of parameters to
meet your application’s requirements; the parameters specify when

http://windowsazurecat.com/2011/02/transient-fault-handling-framework/
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/

138 chapter six

the strategy should stop retrying an operation, and what the intervals
between the retries should be. The choice of retry strategy will be
largely determined by the specific requirements of your application.
For more details about the parameters for each retry strategy, see the
topic “Source Schema for the Transient Fault Handling Application Block”
on MSDN.

You can define your own custom retry strategy. For more infor-
mation, see the topic “Implementing a Custom Retry Strategy” on
MSDN.

You can define your retry policies either in code or in the applica-
tion configuration file. Defining your retry policies in code is most
appropriate for small applications with a limited number of calls that
require retry logic. Defining the retry policies in configuration is more
useful if you have a large number of operations that require retry
logic, because it makes it easier to maintain and modify the policies.

For more information about how to define your retry strategy in
code, see the topic “Specifying Retry Strategies in Code” on MSDN.

For more information about how to define your retry strategies
in a configuration file, see the topic “Specifying Retry Strategies in the
Configuration” on MSDN.

If you define your retry strategies in the configuration file for the
application, you can also define default retry strategies. The block
allows you to specify default retry strategies at two levels. You can
specify a default retry strategy for each of the following operation
categories: SQL connection operations, SQL command operations,
Windows Azure Service Bus operations, Windows Azure caching, and
Windows Azure storage operations. You can also specify a global
default retry strategy.

Defining a Retry Policy
A retry policy is the combination of a retry strategy and a detection
strategy that you use when you execute an operation that may be
affected by transient faults. The RetryManager class includes meth-
ods that enable you to create retry policies by explicitly identifying
the retry strategy and detection strategy, or by using default retry
strategies defined in the configuration file.

For more information about using the retry policies, see the topic
“Key Scenarios” on MSDN.

For more information about the RetryPolicy delegate in the
Microsoft.WindowsAzure.StorageClient namespace, see the blog
post “Overview of Retry Policies in the Windows Azure Storage Client
Library.”

If you are using Windows
Azure storage and you are
already using the retry
policies mechanism in the
Microsoft.WindowsAzure.
StorageClient namespace,
then you can use retry
strategies from the block
and configure the Windows
Azure storage client API to
take advantage of the exten-
sible retry functionality
provided by the block.	

http://msdn.microsoft.com/en-us/library/hh680941(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680943(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680927(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680900(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680900(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680948(v=PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkID=234630
http://go.microsoft.com/fwlink/?LinkID=234630

 139tr ansient fault handling

Executing an Operation
with a Retry Policy

The RetryPolicy class includes several overloaded versions of the
ExecuteAction method. You use the ExecuteAction method to wrap
the calls in your application that may be affected by transient faults.
The different overloaded versions enable you to wrap the following
types of calls to a service.
•	 Synchronous calls that return a void.
•	 Synchronous calls that return a value.
•	 Asynchronous calls that return a void.
•	 Asynchronous calls that return a value.

The ExecuteAction method automatically applies the configured
retry strategy and detection strategy when it invokes the specified
action. If no transient fault manifests itself during the invocation, your
application continues as normal, as if there was nothing between your
code and the action being invoked. If a transient fault does manifest
itself, the block will initiate the recovery by attempting to invoke the
specified action multiple times as defined in the retry strategy. As
soon as a retry attempt succeeds, your application continues as nor-
mal. If the block does not succeed in executing the operation within
the number of retries specified by the retry strategy, then the block
rethrows the exception to your application. Your application must still
handle this exception properly.

The Transient Fault Handling Application Block is not a substitute
for proper exception handling. Your application must still handle
any exceptions that are thrown by the service you are using.

In addition, the application block includes classes that wrap many
common SQL Azure operations with a retry policy for you. Using
these classes minimizes the amount of code you need to write.

For more information about executing an operation with a retry
policy, see the topic “Key Scenarios” on MSDN.

You can use the Retrying
event to receive notifica-
tions in your application
about the retry operations
that the block performs.

If you are working with
SQL Azure, the block
includes classes that
provide direct support for
SQL Azure, such as the
ReliableSqlConnection
class. These classes will help
you reduce the amount of
code you need to write.

http://msdn.microsoft.com/en-us/library/hh680948(v=PandP.50).aspx

140 chapter six

When Should You Use the Transient
Fault Handling Application Block?

This section describes two scenarios in which you should consider
using the Transient Fault Handling Application Block in your Windows
Azure solution.

You are Using a Windows Azure Service
If your application uses any of the Windows Azure services supported
by the Transient Fault Handling Application Block (SQL Azure, Win-
dows Azure Storage, Windows Azure Caching, or Windows Azure
Service Bus), then you can make your application more robust by us-
ing the application block. Any Windows Azure application that uses
these services may occasionally encounter transient faults with these
services. Although you could add your own detection logic to your
application, the application block’s built-in detection strategies will
handle a wider range of transient faults. It is also quicker and easier to
use the application block instead of developing your own solution.

The Windows Azure storage client API already includes support
for custom retry policies. You can use retry strategies from the ap-
plication block with the Windows Azure storage client API. Using
retry strategies from the Transient Fault Handling Application Block
with the Windows Azure retry mechanism enables you to use the
built-in and custom retry strategies and to support defining retry
strategies in the application configuration.

Using Transient Fault Handling Application Block retry polices
instead of Windows Azure built-in retry policies will enable you
to take advantage of the customizable and extensible retry logic
in the application block.

For more information about retries in Windows Azure storage,
see “Overview of Retry Policies in the Windows Azure Storage Client
Library.”

You Are Using a Custom Service
If your application uses a custom service, it can still benefit from using
the Transient Fault Handling Application Block. You can author a
custom detection strategy for your service that encapsulates your
knowledge of which transient exceptions may result from a service
invocation. The Transient Fault Handling Application Block then pro-
vides you with the framework for defining retry policies and for wrap-
ping your method calls so that the application block applies the retry
logic.

http://go.microsoft.com/fwlink/?LinkID=234630
http://go.microsoft.com/fwlink/?LinkID=234630

 141tr ansient fault handling

More Information
For more examples of how you can use the Transient Fault Handling
Application Block in your Windows Azure application, see Chapter
7, “Making Tailspin Surveys More Resilient.”
For detailed information about configuring the Transient Fault
Handling Application Block and writing code that uses the Transient
Fault Handling Application Block, see the topic “The Transient Fault
Handling Application Block” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
For more information about throttling in Windows Azure, see
“Windows Azure Storage Abstractions and their Scalability Targets”
on MSDN:
http://go.microsoft.com/fwlink/?LinkID=234633
For information about how you can use NuGet to prepare your
Visual Studio project to work with the Transient Fault Handling
Application Block, see the topic “Adding the Transient Fault Han-
dling Application Block to your Solution” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680891(v=PandP.50).aspx
There is an additional approach that is provided for backward
compatibility with the “Transient Fault Handling Application
Framework” that uses the RetryPolicyFactory class:
http://windowsazurecat.com/2011/02/transient-fault-handling-frame-
work/
For more details about the parameters for each retry strategy, see
the topic “Source Schema for the Transient Fault Handling Applica-
tion Block” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680941(v=PandP.50).aspx
You can define your own, custom retry strategy. For more informa-
tion, see the topic “Implementing a Custom Retry Strategy” on
MSDN:
http://msdn.microsoft.com/en-us/library/hh680943(v=PandP.50).aspx
For more information about how to define your retry strategy in
code, see the topic “Specifying Retry Strategies in Code” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680927(v=PandP.50).aspx
For more information about how to define your retry strategies in a
configuration file, see the topic “Specifying Retry Strategies in the
Configuration” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680900(v=PandP.50).aspx
For more information about using the retry policies, see the topic
“Key Scenarios” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680948(v=PandP.50).aspx

http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://go.microsoft.com/fwlink/?LinkID=234633
http://msdn.microsoft.com/en-us/library/hh680891(v=PandP.50).aspx
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/
http://msdn.microsoft.com/en-us/library/hh680941(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680943(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680927(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680900(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680948(v=PandP.50).aspx

142 chapter six

For more information about the RetryPolicy delegate in the
Microsoft.WindowsAzure.StorageClient namespace, see the blog
post “Overview of Retry Policies in the Windows Azure Storage
Client Library”:
http://go.microsoft.com/fwlink/?LinkID=234630
For more information about retries in Windows Azure storage,
see “Overview of Retry Policies in the Windows Azure Storage
Client Library”:
http://go.microsoft.com/fwlink/?LinkID=234630
The Transient Fault Handling Application Block is a product of the
collaboration between the Microsoft patterns & practices team
(http://msdn.microsoft.com/practices) and the Windows Azure
Customer Advisory Team (http://windowsazurecat.com/index.php).
It is based on the initial detection and retry strategies, and the
data access support from the “Transient Fault Handling Framework
for SQL Azure, Windows Azure Storage, Service Bus & Cache”
on MSDN:
http://windowsazurecat.com/2011/02/transient-fault-handling-frame-
work/
To access web resources more easily, see the online version of the
bibliography on MSDN:
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

http://go.microsoft.com/fwlink/?LinkID=234630
http://go.microsoft.com/fwlink/?LinkID=234630
http://msdn.microsoft.com/practices
http://windowsazurecat.com/index.php
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/
http://windowsazurecat.com/2011/02/transient-fault-handling-framework/
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

 143

This chapter walks you through the changes that Tailspin made when
it added the Transient Fault Handling Application Block to the Sur-
veys application in order to improve the resilience of the application
to transient fault conditions in the Windows Azure™ technology
platform environment.

The Premise
In order to meet the requirements of its larger customers, Tailspin
agreed to increase the service levels in their service-level agreements
(SLAs), especially with regards to the reliability and availability of the
Surveys application. These customers also have more stringent perfor-
mance requirements—for example, the maximum time the data
export to SQL Azure™ technology platform should take. To meet
these new SLA requirements, Tailspin closely re-examined the Surveys
application to see where it could improve the application’s resilience.

Tailspin discovered that when the Surveys application makes calls
to SQL Azure or Windows Azure Storage, transient conditions some-
times cause errors. The call succeeds if Tailspin retries the operation a
short time later, when the transient condition has cleared.

The Tailspin Surveys application uses Windows Azure storage and
SQL Azure. Survey definitions are stored in Windows Azure tables,
customer configuration data is stored in Windows Azure blob storage,
and survey answers are also stored in Windows Azure blob storage.
The Surveys application also enables customers to export survey data
to SQL Azure where customers can perform their own detailed
analysis of the results. For some customers, the SQL Azure instance is
located in a different data center from where the customer’s surveys
are hosted.

Operators have noticed occasional errors in the Surveys applica-
tion log files that relate to storage errors. These errors are not related
to specific areas of functionality, but appear to occur at random.

7 Making Tailspin Surveys
More Resilient

Applications that run on
 the Windows Azure
platform must be able to
handle transient fault
conditions gracefully and
efficiently in order to reduce
the potential impact of
transient conditions on the
application’s stability.

Improving the
reliability and
resilience of Surveys
is vital if Tailspin is
going to succeed in
attracting larger
customers.

144 chapter seven

There have been a small number of reports that users creating new
surveys have lost the survey definition when they clicked the Save
button in the user interface (UI).

There have also been occasions when long-running jobs that ex-
port data to SQL Azure have failed. Because there is no resume
method for partially completed export tasks, Tailspin must restart the
export process from the beginning. Tailspin has rerun the jobs they
have not completed successfully, but this has meant that Tailspin has
failed to meet its SLA with the customer. Where the export is to a
different data center than the one that hosts the survey definitions,
Tailspin has incurred additional bandwidth-related costs as a result of
having to rerun the export job.

Goals and Requirements
Tailspin wants to implement automatic retry logic for all of its Win-
dows Azure storage operations to improve the overall reliability of the
application. It wants to minimize the risk of losing survey data and
creating inaccurate statistics. Tailspin wants to ensure that the appli-
cation is as resilient as possible, so that it can recover from any tran-
sient errors without operator intervention. It also wants to minimize
the chance of customers experiencing errors when they are creating
new survey definitions.

Tailspin also wants to improve the reliability of the export tasks
that send data to SQL Azure so that it can meet its SLAs with its
customers.

Tailspin wants to be able to tune the retry policies (for example,
by adjusting the back-off delay), in different scenarios. Some tasks are
more time critical, such as saving a new survey definition where a user
is waiting for an acknowledgement that the definition has been saved;
other tasks are less time critical, such as the statistics calculation,
which is not designed to give real-time results.

Overview of the Transient Fault Handling
Application Block Solution

The Transient Fault Handling Application Block enables you to add
retry logic to your cloud-based application. You can use the applica-
tion block to apply a retry policy to any calls that may experience er-
rors as a result of transient conditions.

The Transient Fault Handling Application Block includes detec-
tion strategies that can identify exceptions that may be caused by
transient faults. Tailspin Surveys uses Windows Azure storage and
SQL Azure; the Transient Fault Handling Application Block includes
detection strategies for these services.

 145making tailspin surveys more resilent

The Transient Fault Handling Application Block uses retry strate-
gies to define retry patterns: the number of retries and the interval
between them. These retry strategies can be defined in code or in
configuration. Tailspin plans to use retry strategies defined in configu-
ration so that it is easier to tune the behavior of the retry strategies
used by the Surveys application.

Inside the Implementation
This section describes some of the details of how Tailspin uses the
Transient Fault Handling Application Block and how it modified the
Surveys application to use the application block. If you are not inter-
ested in the details, you can skip to the next section.

You may find it useful to have the Tailspin solution open in Visual
Studio while you read this section so that you can refer to the code
directly.

For instructions on installing the Tailspin Surveys application, see
Appendix B, “Tailspin Surveys Installation Guide.”

Tailspin uses the Transient Fault Handling Application Block in the
Surveys application wherever it is using the Windows Azure storage
API or invoking an operation on a SQL Azure database. For example,
it uses the application block in the code that accesses the rule and
service information stores, in the wrapper classes for the Windows
Azure storage types, and in the SurveySqlStore class. All of these
classes are located in the Tailspin.Shared project.

The configuration file for each worker and web role in the Sur-
veys application includes the retry strategies shown in the following
code snippet.

XML
<RetryPolicyConfiguration
 defaultRetryStrategy="Fixed Interval Retry Strategy"
 defaultAzureStorageRetryStrategy="Fixed Interval Retry
 Strategy"
 defaultSqlCommandRetryStrategy="Backoff Retry Strategy">
 <incremental name="Incremental Retry Strategy"
 retryIncrement="00:00:01"
 initialInterval="00:00:01"
 maxRetryCount="10" />
 <fixedInterval name="Fixed Interval Retry Strategy"
 retryInterval="00:00:05"
 maxRetryCount="6"
 firstFastRetry="true" />
 <exponentialBackoff name="Backoff Retry Strategy"
 minBackoff="00:00:05"
 maxBackoff="00:00:45"

146 chapter seven

 deltaBackoff="00:00:04"
 maxRetryCount="10" />
</RetryPolicyConfiguration>

Tailspin uses the Enterprise Library configuration tool to edit
these settings.

Tailspin uses the RetryManager class to load the retry strategies
from the configuration file and instantiate a retry policy. The follow-
ing code snippet from the RuleSetModelStore class shows an ex-
ample of how Tailspin creates a new retry policy that uses the Win-
dows Azure storage detection strategy and the “Incremental Retry
Strategy” from the configuration.

C#
public RuleSetModelStore(
 RuleSetModelToXmlElementConverter
 ruleSetModelToXmlElementConverter,
 [Dependency("RuleSetModel")] IConfigurationFileAccess
 fileAccess,
 RetryManager retryManager)
{
 this.retryPolicy = retryManager.GetRetryPolicy
 <StorageTransientErrorDetectionStrategy>
 (AzureConstants.FaultHandlingPolicies.Incremental);

 ...
}

You should be careful of trying to load retry strategies from the
web.config file by using the RetryPolicyFactory or Retry
Manager classes in the web role OnStart event. See the topic
“Specifying Retry Strategies in the Configuration” on MSDN
for more details.

If you are using the Transient Fault Handling Application Block
with Windows Azure storage, you should be careful not to use the
built-in retry policies in the Windows Azure storage APIs. The follow-
ing code snippet from the AzureQueue class in the Tailspin.Shared
project shows how Tailspin disables the built-in retry policies.

C#
var client = this.account.CreateCloudQueueClient();
client.RetryPolicy = RetryPolicies.NoRetry();

The following code snippet from the GetFileContent method in
the RuleModelStore class shows how Tailspin wraps a call that ac-
cesses Windows Azure storage that may be affected by transient fault
conditions with the retry policy.

Tailspin Surveys uses
a limited number of
retry strategies from
a limited number of
locations in code.
This example shows
a number default
retry strategies to
make it easier to
maintain the code.

http://msdn.microsoft.com/en-us/library/hh680900(v=PandP.50).aspx

 147making tailspin surveys more resilent

C#
try
{
 return this.retryPolicy.ExecuteAction(
 () => this.fileAccess.GetFileContent());
}
catch (ConfigurationFileAccessException)
{
 return null;
}

Tailspin uses the same approach when the Surveys application
saves data to SQL Azure, as shown in the following code sample from
the SurveySqlStore class. This example also shows how to load a
default policy from configuration.

C#
public SurveySqlStore()
{
 this.retryPolicy =
 RetryPolicyFactory.GetDefaultSqlCommandRetryPolicy();
}
public void SaveSurvey(string connectionString,
 SurveyData surveyData)
{
 using (var dataContext =
 new SurveySqlDataContext(connectionString))
 {
 dataContext.SurveyDatas.InsertOnSubmit(surveyData);
 try
 {
 this.retryPolicy.ExecuteAction(() => dataContext
 .SubmitChanges());
 }
 catch (SqlException ex)
 {
 Trace.TraceError(ex.TraceInformation());
 throw;
 }
 }
}

If Tailspin wanted to collect
information about the
retries in the application,
it could use the Retrying
event in the retry policy
to capture the details and
log them for analysis.

Tailspin Surveys uses LINQ
to SQL as an object
relational mapper. All
database interactions are
abstracted by the data
model; therefore, Tailspin
does not have to use the
ReliableSqlConnection
class or the SQL Azure
extension classes provided
by the Transient Fault
Handling Application Block.

148 chapter seven

Tailspin’s data access requirements are relatively simple, so it only
needs to use the simplest version of the ExecuteAction method. It
does not need to wrap any calls that return values or make any asyn-
chronous calls.

Setup and Physical Deployment
The Tailspin Surveys application uses retry strategies defined in the
configuration files for the roles that use Windows Azure storage and
SQL Azure. In the sample, all of these roles use the same retry strate-
gies. In a real-world deployment you should adjust the retry strategies
to meet the specific requirements of your application.

More Information
For instructions on installing the Tailspin Surveys application,
see Appendix B, “Tailspin Surveys Installation Guide” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680894(v=PandP.50).aspx
For more information about retry strategies, see “Specifying Retry
Strategies in the Configuration” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680900(v=PandP.50).aspx
To access web resources more easily, see the online version of the
bibliography on MSDN:
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

http://msdn.microsoft.com/en-us/library/hh680894(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680900(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

 149

This appendix contains sample service information and rules defini-
tions for the two alternative architectures for Tailspin’s autoscaling
infrastructure described in Chapter 5, “Making Tailspin Surveys More
Elastic.”

Option 1
Option 1 deploys the management application and the Autoscaling
Application Block to the North Central US data center only.

appendix a Sample Configurations
for Deploying Tailspin

Surveys to Multiple
Data Centers

Service Model

XML
<?xml version="1.0" encoding="utf-8"?>
<serviceModel ...>
 <subscriptions>
 <subscription name="Tailspin Surveys Production"
 subscriptionId="..."
 certificateThumbprint="..."
 certificateStoreName="My"
 certificateStoreLocation="LocalMachine">
 <services>
 <!--
 Multiple service definitions, one for each data center that
 Tailspin Surveys is deployed to.
 Note: All share the same wadStorageAccountName values because the
 diagnostic is collected centrally in this model.
 -->
 <service dnsPrefix="ustailspinsurveys" slot="Production" scalingMode="Scale">
 <roles>
 <role alias="usTailSpinWorkersSurveys"
 roleName="TailSpin.Workers.Surveys"

150 appendix a

 wadStorageAccountName="usTailspin" />
 <role alias="usTailSpinWebSurveyPublic"
 roleName="TailSpin.Web.Survey.Public"
 wadStorageAccountName="usTailspin" />
 <role alias="usTailSpinWeb"
 roleName="TailSpin.Web"
 wadStorageAccountName="usTailspin" />
 </roles>
 </service>
 <service dnsPrefix="eutailspinsurveys" slot="Production" scalingMode="Scale">
 <roles>
 <role alias="euTailSpinWorkersSurveys"
 roleName="TailSpin.Workers.Surveys"
 wadStorageAccountName="euTailspin" />
 <role alias="euTailSpinWebSurveyPublic"
 roleName="TailSpin.Web.Survey.Public"
 wadStorageAccountName="euTailspin" />
 <role alias="euTailSpinWeb"
 roleName="TailSpin.Web"
 wadStorageAccountName="euTailspin" />
 </roles>
 </service>
 <service dnsPrefix="astailspinsurveys" slot="Production" scalingMode="Scale">
 <roles>
 <role alias="asTailSpinWorkersSurveys"
 roleName="TailSpin.Workers.Surveys"
 wadStorageAccountName="asTailspin" />
 <role alias="asTailSpinWebSurveyPublic"
 roleName="TailSpin.Web.Survey.Public"
 wadStorageAccountName="asTailspin" />
 <role alias="asTailSpinWeb"
 roleName="TailSpin.Web"
 wadStorageAccountName="asTailspin" />
 </roles>
 </service>
 </services>
 <!--
 Multiple storage accounts, one for each data center that Tailspin Surveys
 is deployed to. Each storage account has its own connection string.
 These queues are used by the Tailspin Surveys application and are
 included here because we want to use rules that monitor the queue lengths.
 -->
 <storageAccounts>
 <storageAccount alias="usTailspin" connectionString="...">
 <queues>

 151sample configur ations for deploying tailspins surveys

 <queue alias="usTailspinSurveyAnswerStoredQueue"
 queueName="surveyanswerstored" />
 <queue alias="usTailspinSurveyTransferQueue"
 queueName="surveytransfer" />
 </queues>
 </storageAccount>
 <storageAccount alias="euTailspin" connectionString="...">
 <queues>
 <queue alias="euTailspinSurveyAnswerStoredQueue"
 queueName="surveyanswerstored" />
 <queue alias="euTailspinSurveyTransferQueue"
 queueName="surveytransfer" />
 </queues>
 </storageAccount>
 <storageAccount alias="asTailspin" connectionString="...">
 <queues>
 <queue alias="asTailspinSurveyAnswerStoredQueue"
 queueName="surveyanswerstored" />
 <queue alias="asTailspinSurveyTransferQueue"
 queueName="surveytransfer" />
 </queues>
 </storageAccount>
 </storageAccounts>
 </subscription>
 </subscriptions>
 <scaleGroups />
</serviceModel>

Rules

XML
<?xml version="1.0" encoding="utf-16"?>
<rules ...>
 <constraintRules>
 <!--
 An example constraint rule - there are more.
 We need duplicates of the same rule because the utcOffset values are different.
 In some cases it may be possible to use the same rule with an action for each
 region.
 -->
 <rule name="US WorkerRole reserving instances for midnight survey processing"
 description="..." enabled="true" rank="5">
 <timetable startDate="2011-10-05" endDate="2012-10-06" startTime="00:01:00"
 duration="02:00:00" utcOffset="-08:00">
 <daily />

152 appendix a

 </timetable>
 <actions>
 <range target="usTailSpinWorkersSurveys" min="3" max="6" />
 </actions>
 </rule>
 <rule name="EU WorkerRole reserving instances for midnight survey processing"
 description="..." enabled="true" rank="5">
 <timetable startDate="2011-10-05" endDate="2012-10-06" startTime="00:01:00"
 duration="02:00:00" utcOffset="+00:00">
 <daily />
 </timetable>
 <actions>
 <range target="euTailSpinWorkersSurveys" min="3" max="6" />
 </actions>
 </rule>
 <rule name="ASIA WorkerRole reserving instances for midnight survey processing"
 description="..." enabled="true" rank="5">
 <timetable startDate="2011-10-05" endDate="2012-10-06" startTime="00:01:00"
 duration="02:00:00" utcOffset="+09:00">
 <daily />
 </timetable>
 <actions>
 <range target="asTailSpinWorkersSurveys" min="3" max="6" />
 </actions>
 </rule>
 </constraintRules>

 <reactiveRules>
 <!--
 An example reactive rule - there are more.
 We need duplicates of the same rule because we must tie the operand source to
 the correct target.
 -->
 <rule name="US Heavy demand on public site" description="..." enabled="true">
 <actions>
 <scale target="usTailSpinWebSurveyPublic" by="1" />
 </actions>
 <when>
 <greater operand="usASPNET_requests_rejected" than="5" />
 </when>
 <rank>0</rank>
 </rule>
 <rule name="EU Heavy demand on public site" description="..." enabled="true">

 153sample configur ations for deploying tailspins surveys

 <actions>
 <scale target="euTailSpinWebSurveyPublic" by="1" />
 </actions>
 <when>
 <greater operand="euASPNET_requests_rejected" than="5" />
 </when>
 <rank>0</rank>
 </rule>
 <rule name="AS Heavy demand on public site" description="..." enabled="true">
 <actions>
 <scale target="asTailSpinWebSurveyPublic" by="1" />
 </actions>
 <when>
 <greater operand="asASPNET_requests_rejected" than="5" />
 </when>
 <rank>0</rank>
 </rule>
 </reactiveRules>

 <operands>
 <!-- Operands for US roles -->
 <performanceCounter alias="usASPNET_requests_rejected" timespan="00:10:00"
 aggregate="Average" source="usTailSpinWebSurveyPublic"
 performanceCounterName="\ASP.NET\Requests Rejected" />
 <performanceCounter alias="usCPU_over_20_minutes_for_TailspinWeb"
 timespan="00:20:00" aggregate="Average" source="usTailSpinWeb"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 <performanceCounter alias="usCPU_over_30_minutes" timespan="00:30:00"
 aggregate="Average" source="usTailSpinWorkersSurveys"
 performanceCounterName="\Processor(_Total)\% Processor Time" />

 <!-- Operands for EU roles -->
 <performanceCounter alias="euASPNET_requests_rejected" timespan="00:10:00"
 aggregate="Average" source="euTailSpinWebSurveyPublic"
 performanceCounterName="\ASP.NET\Requests Rejected" />
 <performanceCounter alias="euCPU_over_20_minutes_for_TailspinWeb"
 timespan="00:20:00" aggregate="Average" source="euTailSpinWeb"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 <performanceCounter alias="euCPU_over_30_minutes" timespan="00:30:00"
 aggregate="Average" source="euTailSpinWorkersSurveys"
 performanceCounterName="\Processor(_Total)\% Processor Time" />

 <!-- Operands for Asia roles -->
 <performanceCounter alias="asASPNET_requests_rejected" timespan="00:10:00"
 aggregate="Average" source="asTailSpinWebSurveyPublic"

154 appendix a

 performanceCounterName="\ASP.NET\Requests Rejected" />
 <performanceCounter alias="asCPU_over_20_minutes_for_TailspinWeb"
 timespan="00:20:00" aggregate="Average" source="asTailSpinWeb"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 <performanceCounter alias="asCPU_over_30_minutes" timespan="00:30:00"
 aggregate="Average" source="asTailSpinWorkersSurveys"
 performanceCounterName="\Processor(_Total)\% Processor Time" />

 <!-- Custom operands – require an attribute to specify the hosted service -->
 <activeSurveysOperand alias="usNumberOfSurveysSubmitted" timespan="00:10:00"
 aggregate="Average" minNumberOfAnswers="0" hostedService="USTailspin"
 xmlns="http://Tailspin/ActiveSurveys" />
 <tenantCountOperand alias="usNumberOfTenants" timespan="00:10:00"
 aggregate="Average" hostedService="USTailspin"
 xmlns="http://Tailspin/TenantCount" />

 <activeSurveysOperand alias="euNumberOfSurveysSubmitted" timespan="00:10:00"
 aggregate="Average" minNumberOfAnswers="0" hostedService="EUTailspin"
 xmlns="http://Tailspin/ActiveSurveys" />
 <tenantCountOperand alias="euNumberOfTenants" timespan="00:10:00"
 aggregate="Average" hostedService="EUTailspin"
 xmlns="http://Tailspin/TenantCount" />

 <activeSurveysOperand alias="asNumberOfSurveysSubmitted" timespan="00:10:00"
 aggregate="Average" minNumberOfAnswers="0" hostedService="ASTailspin"
 xmlns="http://Tailspin/ActiveSurveys" />
 <tenantCountOperand alias="asNumberOfTenants" timespan="00:10:00"
 aggregate="Average" hostedService="ASTailspin"
 xmlns="http://Tailspin/TenantCount" />

 </operands>
</rules>

Option 2
Option 2 deploys the management application to the North Central
US data center only and the Autoscaling Application Block to each
data center. Each data center has its own service model definition and
rule set.

 155sample configur ations for deploying tailspins surveys

Service Model

XML
<?xml version="1.0" encoding="utf-8"?>
<serviceModel ...>
 <subscriptions>
 <subscription name="Tailspin Surveys Production"
 subscriptionId="..."
 certificateThumbprint="..."
 certificateStoreName="My"
 certificateStoreLocation="LocalMachine">
 <services>
 <!--
 Single service definitions.
 Each data center has a copy of this model with the dnsPrefix changed to
 reflect the data center location.
 -->
 <service dnsPrefix="ustailspinsurveys" slot="Production" scalingMode="Scale">
 <roles>
 <role alias="TailSpinWorkersSurveys" roleName="TailSpin.Workers.Surveys"
 wadStorageAccountName="Tailspin" />
 <role alias="TailSpinWebSurveyPublic"
 roleName="TailSpin.Web.Survey.Public"
 wadStorageAccountName="Tailspin" />
 <role alias="TailSpinWeb" roleName="TailSpin.Web"
 wadStorageAccountName="Tailspin" />
 </roles>
 </service>
 </services>
 <!--
 Single storage account, duplicated in each data center.
 Each data center will have a different
 connectionString for its storage account.
 -->
 <storageAccounts>
 <storageAccount alias="Tailspin" connectionString="...">
 <queues>
 <queue alias="TailspinSurveyAnswerStoredQueue"
 queueName="surveyanswerstored" />
 <queue alias="TailspinSurveyTransferQueue" queueName="surveytransfer" />
 </queues>
 </storageAccount>
 </storageAccounts>
 </subscription>
 </subscriptions>
 <scaleGroups />
</serviceModel>

156 appendix a

Rules

XML
<?xml version="1.0" encoding="utf-16"?>
<rules ...>
 <constraintRules>
 <!--
 An example constraint rule - there are more.
 Each region has its own rules file - it must be edited to reflect the different
 utcOffset values.
 -->
 <rule name="WorkerRole reserving instances for midnight survey processing"
 description="..." enabled="true" rank="5">
 <timetable startDate="2011-10-05" endDate="2012-10-06" startTime="00:01:00"
 duration="02:00:00" utcOffset="-08:00">
 <daily />
 </timetable>
 <actions>
 <range target="TailSpinWorkersSurveys" min="3" max="6" />
 </actions>
 </rule>
 </constraintRules>

 <reactiveRules>
 <!--
 An example reactive rule - there are more.
 Each region can have the same reactive rules, although you may want to change
 them in each region to reflect different usage patterns.
 -->
 <rule name="Heavy demand on public site" description="..." enabled="true">
 <actions>
 <scale target="TailSpinWebSurveyPublic" by="1" />
 </actions>
 <when>
 <greater operand="ASPNET_requests_rejected" than="5" />
 </when>
 <rank>0</rank>
 </rule>

 </reactiveRules>

 157sample configur ations for deploying tailspins surveys

 <operands>
 <!-- Operands can be identical for the different regions -->
 <performanceCounter alias="ASPNET_requests_rejected" timespan="00:10:00"
 aggregate="Average" source="TailSpinWebSurveyPublic"
 performanceCounterName="\ASP.NET\Requests Rejected" />
 <performanceCounter alias="CPU_over_20_minutes_for_TailspinWeb"
 timespan="00:20:00" aggregate="Average" source="TailSpinWeb"
 performanceCounterName="\Processor(_Total)\% Processor Time" />
 <performanceCounter alias="CPU_over_30_minutes" timespan="00:30:00"
 aggregate="Average" source="TailSpinWorkersSurveys"
 performanceCounterName="\Processor(_Total)\% Processor Time" />

 <activeSurveysOperand alias="NumberOfSurveysSubmitted" timespan="00:10:00"
 aggregate="Average" minNumberOfAnswers="0"
 xmlns="http://Tailspin/ActiveSurveys" />
 <tenantCountOperand alias="NumberOfTenants" timespan="00:10:00"
 aggregate="Average" xmlns="http://Tailspin/TenantCount" />
 </operands>

</rules>

 159

appendix b Tailspin Surveys
Installation

Guide

Introduction
This document will guide you through the installation of the Tailspin
Surveys application for Microsoft® Enterprise Library 5.0 Integration
Pack for Windows Azure, including the Autoscaling Application Block
(“WASABi”) and the Transient Fault Handing Application Block (“To-
paz”). The Surveys application is a comprehensive sample application
that demonstrates how you can use the Autoscaling Application Block
to scale an application running on Windows Azure™ technology
platform up or down elastically, based on the rules you specify. In
addition, it contains an example of a management site that you can
use to configure service information and rules that are used by the
Autoscaling Application Block to monitor how the application’s role
instances change based on the rules and the conditions causing the
changes.

The Tailspin Surveys application covers a few scenarios and fea-
tures, but it does not cover the many other useful features of the
Autoscaling Application Block or the Transient Fault Handing Applica-
tion Block or the many possible scenarios in which you will benefit
from their use. Therefore, we strongly encourage you to go beyond
the basic uses of the application blocks demonstrated in the Tailspin
Surveys application. For comprehensive coverage of the application
blocks, see “The Autoscaling Application Block” and “The Transient Fault
Handling Application Block.”

This version of the Tailspin Surveys application builds on the
previous releases of the Surveys application by Microsoft patterns &
practices. Please refer to the installation documents of the previous
releases for the topics that are not covered in this document.

Installing this application can take between an hour and an hour
and a half, depending on your software and hardware configuration
and your experience with Windows Azure. This document walks you
through the following:

http://msdn.microsoft.com/en-us/library/hh680945(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680945(v=PandP.50).aspx
http://msdn.microsoft.com/en-us/library/hh680945(v=PandP.50).aspx
http://msdn.microsoft.com/practices
http://msdn.microsoft.com/practices
http://wag.codeplex.com/releases/view/71446
http://wag.codeplex.com/releases/view/71446

160 appendix b

•	 Installing the required dependencies using the included Dependency checking tool.
•	 Creating two hosted services for the Tailspin Surveys web application and the

Tailspin Surveys autoscaling runtime and management application.
•	 Updating the project files with your Windows Azure subscription information.
•	 Deploying the application to Windows Azure.
•	 Verifying the installation on Windows Azure.

Prerequisites
In order to run the Tailspin Surveys application, you will need the following:
•	 A development machine running Microsoft Visual Studio® 2010 development

system SP1.
•	 All required Microsoft Windows® updates.
•	 NuGet Package Manager (http://nuget.codeplex.com/).
•	 A Windows Azure subscription with room for two hosted services (if you want

to run the Tailspin Surveys application and the Autoscaler component with the
Management Web application in Windows Azure).

•	 A Windows Azure storage account.
•	 The Dependency checking tool, discussed below, which will verify that you have

the prerequisites listed below installed. If not, it will help you install them.
•	 Visual Studio 2010
•	 MVC 3 Framework
•	 Windows Azure SDK for .NET and Windows Azure Tools for Microsoft Visual

Studio – November 2011 Release
•	 Windows Identity Foundation Runtime
•	 Optional: Microsoft Internet Information Services 7 (IIS)

•	This is required to run the management site in simulated mode or to deploy
the Autoscaler locally.

Install Source Code and Dependencies
The Dependency checking tool will check to see if you have the required prerequisites
and, if not, will help you install them.

http://nuget.codeplex.com/

 161tailspin surveys installation guide

To install the Tailspin Surveys application
source code and dependencies
1.	 Unzip the source code to a location on your hard drive.

Note: You should not place the source code in a folder that is nested too deeply,
because the Windows Azure Tools for Visual Studio do not support paths that are
longer than 255 characters. We have tested the Tailspin Surveys application
deployment from C:\Tailspin.

2.	 Run “CheckDependencies.cmd” located in the root of your download folder.
3.	 In the Dependency checking tool, click the Scan button.

4.	 Ensure that all the required dependencies have been installed. If not, install each
prerequisite one at a time and click the Rescan button.

162 appendix b

Prepare Your Windows Azure Subscription
for Deployment

In order to prepare your Windows Azure subscription for deployment, you will need to
do the following:

1.	 Generate the Windows Azure management certificate and export it.
2.	 Generate the SSL certificate.
3.	 Create the required hosted services.
4.	 Upload the certificates as hosted services’ service certificates.
5.	 Create the storage account.

The sections below will walk you through each of these tasks.

Generate the Windows Azure Management Certificate
and Export as .pfx File

The Enterprise Library Autoscaling Application Block needs to use a valid management
certificate for your Windows Azure subscription in order to be able to scale your applica-
tion. If you do not already have a management certificate, you can follow the steps below
to generate one. You will also need to upload to the Windows Azure Management Portal
the generated management certificate and an SSL certificate, which will be generated in
the next steps. In summary, the following steps will allow you to:
•	 Generate the management certificate.
•	 Export from Current User\My store to upload to the Windows Azure Management

Portal.
•	 Generate the SSL certificate to upload to the Windows Azure Management Portal.

You should be aware of the following with respect to certificates:
•	 Windows Azure roles that expose SSL endpoints or affect changes to Windows

Azure deployments, such as the Autoscaling Block, require access to the related
certificates from within the running instances of those roles. These certificates
need to be uploaded to the Service Certificates section of the corresponding
hosted services.

•	 The certificates created by the sample application for SSL use are for demonstration
purposes only and are not meant to be used in production.

•	 The management and SSL certificates .pfx files generated during installation should
be kept in a safe location with strict permissions via access control lists (ACLs), or
deleted after uploading them to Windows Azure.

 163tailspin surveys installation guide

To generate the Windows Azure Management
Certificate and import it for use in Visual Studio
1.	 Go to the Windows Azure profile generation site at http://go.microsoft.com/

fwlink/?LinkId=229563.
2.	 Sign in to your Windows Live® account that has a Windows Azure subscription.
3.	 Start Visual Studio as an administrator. To do this, right-click on Microsoft

Visual Studio 2010 and select Run as
administrator.

4.	 Open the Tailspin.sln solution.
5.	 Right-click on the Tailspin.Surveys.Cloud project and click Publish. Note that

you will not complete the wizard yet; you will only perform some steps to
generate and import the management certificate in preparation for the
deployment.

6.	 In the Publish Windows Azure Application wizard page, click on the “Sign in
to download credentials” link.

http://go.microsoft.com/fwlink/?LinkId=229563
http://go.microsoft.com/fwlink/?LinkId=229563

164 appendix b

7.	 The link will open the Internet browser and navigate to the Windows Azure site.
Sign in with a Windows Live account with a Windows Azure subscription.

8.	 Follow the steps on the page to download the .publishsettings file.
9.	 Return to the Publish Windows Azure Application wizard page in Visual Studio.
10.	 Click on the Import button and browse to the .publishsettings file you have

just downloaded.
11.	 You can now click Cancel because you will need to prepare the solution before

you can publish to Windows Azure.

Note: After this step, Visual Studio will be configured to publish to your Windows
Azure subscription, and the management certificate will be installed in the Current
User\My certificate store.

To export the Windows Azure Management
Certificate to a .pfx file
1.	 Start the Microsoft Management Console (MMC).
2.	 Select File, select Add/Remove Snap-in.
3.	 In the Add or Remove Snap-ins dialog, from the Available snap-ins, select

Certificates, and click Add.

4.	 In the Certificates snap-in dialog, select My user account. Click Finish.
5.	 In the Add or Remove Snap-ins dialog, click OK.
6.	 In the MMC Console, select Certificates - Current User.

 165tailspin surveys installation guide

7.	 Expand Personal, and select Certificates.
8.	 In the Microsoft Management Console certificates list, locate and right-click the

Windows Azure Tools certificate that you imported in the previous steps, select
All Tasks, and click Export.

9.	 In the Certificate Export Wizard, click Next.
10.	 Click Yes, export the private key. Click Next.
11.	 Keep the Personal Information Exchange –PKCS #12

 (.PFX) as the default. Click Next.
12.	 Enter a password for the exported file. Do not use a blank

 password because a password is mandatory when uploading
 a .pfx file to Windows Azure.

13.	 Enter the directory where the application is located and
 give it a name such as “C:\Tailspin\AzureManagementCert.
 pfx” and click Next.

14.	 Click Finish.

Generate the SSL Certificate
1.	 Open a Visual Studio Command Prompt (2010) as an administrator (in the

Windows 7 Start menu, type Visual Studio Command Prompt, select the “Visual
Studio Command Prompt (2010)”, right-click and select Run as administrator).

166 appendix b

2.	 Change directories to the folder where you unzipped the source code for the
Tailspin Surveys application.

3.	 To generate the SSL certificate, enter “GenerateSSLCert.cmd.”
4.	 Enter a private key password for the certificate file. This is mandatory.

5.	 A window will pop up asking you to provide another password. Keep this blank
and click OK.

 167tailspin surveys installation guide

6.	 You will see a popup to confirm the creation of the certificate without password
protection. Click Yes, because this latter password would only be used temporarily,
but the generated .pfx file will use the password you entered in the previous
step.

7.	 After completing these steps, you will have the SSL certificate in a file named
ssl_certificate.pfx in your current directory.

Create the Required Hosted Services
Next, you will need to create the hosted services.

To create the required hosted services
1.	 In the Management Portal - Windows Azure, click Hosted Services, Storage

Accounts & CDN on the navigation bar on the left.

2.	 Click Hosted Services on the left menu.
3.	 Select your Windows Azure subscription.
4.	 Select New Hosted Service, either from the

ribbon bar or on the context menu, by right-
clicking on your Windows Azure subscription.

5.	 In the Create a New Hosted Service dialog:

a.	 In the “Enter a name for your service” text
box, enter Tailspin-Surveys.

b.	 In the “Enter a URL prefix for your service”
text box, enter a name of your choice to
signify that this is the Tailspin web applica-
tion. This prefix must be unique.

168 appendix b

c.	 Select Create a new affinity group from the “Create or choose an affinity
group” drop-down menu.

d.	 In the Create a New Affinity Group dialog, enter an Affinity group name
and select a Location, and press OK.

e.	 Select Do not deploy.
f.	 Click OK.

6.	 Select the Windows Azure subscription to create the second hosted service.
7.	 In the Create a New Hosted Service dialog:

a.	 In the “Enter a name for your service” text box, enter Tailspin-Autoscaling.
b.	 In the “Enter a URL prefix for your service” text box, enter a name of your

choice to signify that this is the Tailspin Autoscaling management website
and run-time worker role. This prefix must be unique.

c.	 Select the Affinity group that you created in the previous step from the
“Create or choose an affinity group” drop-down menu.

d.	 Select “Do not deploy.”
e.	 Click OK.

You should see the two hosted services.

 169tailspin surveys installation guide

Upload Certificates as Hosted Services’
Service Certificates

The cloud projects you will deploy to Windows Azure use the service certificates that
must be uploaded to the Windows Azure service management certificates store. They
are the secure sockets layer (SSL) certificates the websites use and the Windows Azure
management certificate the Autoscaling Application Block uses to govern the number of
instances of configured roles.

To add the certificates
1.	 Add the SSL certificate to the Tailspin-Surveys hosted service.

a.	 In the Management Portal - Windows Azure, select the Certificates folder
under the Tailspin-Surveys hosted service and click Add Certificate.

b.	 In the Upload an X.509 Certificate dialog, browse to the ssl_certificate.pfx
certificate that was generated previously.

c.	 Enter the password. Click OK.
d.	 You should see the Tailspin RI SSL Certificate certificate added to the

service certificates list on the portal.
2.	 Add the SSL certificate to the Tailspin-Autoscaling hosted service.

a.	 In the Management Portal - Windows Azure, select the Certificates folder
under the Tailspin-Autoscaling hosted service and click Add Certificate.

b.	 In the Upload an X.509 Certificate dialog, browse to the ssl_certificate.
pfx certificate that was generated previously.

c.	 Enter the password. Click OK.
d.	 You should see the Tailspin RI SSL Certificate added to the service

certificates list on the portal.
3.	 Add the management certificate for the Tailspin-Autoscaling hosted service.

a.	 In the Management Portal - Windows Azure, select the Certificates folder
under the Tailspin-Autoscaling hosted service and click Add Certificate.

b.	 In the Upload an X.509 Certificate dialog, browse to the Azure
ManagementCert.pfx certificate that you exported previously.

c.	 Enter the password. Click OK.
d.	 You should see the Windows Azure Tools certificate added to the service

certificates list on the portal.
You should see the hosted services with the certificates, as shown in the following

image.

170 appendix b

Create the Storage Account
The Autoscaling Application Block uses Windows Azure storage for its operations. For
more information about autoscaling and how the Autoscaling Application Block works,
see Chapter 4, “Autoscaling and Windows Azure,” in this guide. In this step you will
create the storage account that the Autoscaling Application Block will use in the Tailspin
scenario.

To create the storage account
1.	 In the Management Portal - Windows Azure, select Storage Accounts.
2.	 Select the correct subscription, right-click, and select New Storage Account.
3.	 In the Create a New Storage Account dialog,

a.	 Choose a subscription.
b.	 Enter a URL.
c.	 Choose a region or affinity group you created previously.
d.	 Click OK.

You should see the added storage account.

Note: You should make note of the name of the storage account because you will need
it to configure your Visual Studio solution.

 171tailspin surveys installation guide

To make sure the application uses the created storage account
1.	 In Visual Studio, for each of the cloud projects’ roles, double-click the role, and

click on the Configuration tab.
2.	 Clear the check box “Use publish storage account as connection string when you

publish to Windows Azure” if it is checked (it should not be checked).

172 appendix b

Building the Solution
Before you can build the solution, you need to:

1.	 Install NuGet packages.
2.	 Modify the certificates in the Visual Studio Cloud Projects.
3.	 Prepare the settings in the Cloud Projects.

Install NuGet Packages
The Tailspin Surveys application depends on certain binaries that are not included in the
.zip file. Perform the following steps to download and install these dependencies using
the NuGet Package Manager.

To install NuGet packages
1.	 Start Visual Studio as an administrator. To do this, right-click on Microsoft

Visual Studio 2010 and select Run as administrator.

2.	 Open the Tailspin.sln solution.
3.	 In Solution Explorer, right-click the Tailspin solution, select Enable NuGet

Package Restore, and click Yes in the confirmation dialog box.

http://nuget.codeplex.com/

 173tailspin surveys installation guide

Note: If you are using NuGet version 1.5 or earlier, you will not see the Enable
NuGet Package Restore menu item. In this case, enter the following commands on
the NuGet Package Manager Console. You can access the NuGet Package Manager
Console through the Visual Studio menu. Point to Tools, point to Library Package
Manager, select Package Manager Console, and enter the following commands:

•	Install-Package NuGetPowerTools
•	Enable-PackageRestore

Modify the Certificates in the Visual Studio
Cloud Projects

The Cloud projects in the Tailspin scenario use various certificates you have uploaded to
Windows Azure in the previous sections. In this step, you will modify the Cloud projects
to correctly refer to those certificates for the roles.

To modify the certificates in the Visual Studio Cloud Projects
1.	 In Visual Studio, in the Solution Explorer, select the Tailspin.Web role under the

Tailspin.Surveys.Cloud project.

a.	 Double-click the Tailspin.Web role and click Certificates.
b.	 You should make the thumbprint for ssl_certificate match the

thumbprint for Tailspin RI SSL Certificate in the Management
Portal - Windows Azure. Update the thumbprint in Visual Studio,
copying the value from the portal. Also make sure the Store
Location is set to LocalMachine, and Store Name is set to My.

174 appendix b

SSL certificate thumbprint in Visual Studio

SSL certificate thumbprint in Windows Azure

 175tailspin surveys installation guide

2.	 Double-click the Tailspin.Web.Management role under the Tailspin.Autoscaling.
Cloud project, select Certificates, and ensure that the thumbprint for the
ssl_certificate corresponds to the thumbprint for the Tailspin RI SSL
Certificate in the Management Portal - Windows Azure.

3.	 Double-click the Tailspin.Workers.Autoscaling role under the Tailspin.Auto-
scaling.Cloud project, select Certificates, and ensure that the thumbprint for
the TailspinManagementCert corresponds to the thumbprint for the Windows
Azure Tools certificate in the Management Portal - Windows Azure.

Prepare the Settings in the Cloud Projects
In this step, you will need to update the settings in the Cloud projects to specify the
storage account you created previously.

To prepare the settings in the Cloud Projects
1.	 In the Management Portal - Windows Azure, select Storage Accounts.
2.	 Select the storage account that you created previously.

a.	 On the right-hand side, under Primary access key, click View.
b.	 In the View Storage Access Keys, copy the Primary access key.

3.	 In Visual Studio, double-click the Tailspin.Web role in the Tailspin.Surveys.Cloud
project and click Settings.

a.	 In the Service Configuration drop-down, select All Configurations.
b.	 Ensure that the setting type for DataConnectionString is Connection

String.
c.	 Click the ellipsis (…) button to the right of the DataConnectionString

Value field.
i.	 In the Storage Account Connection String dialog, select Enter

storage account credentials.
ii.	 Update the Account name with the corresponding name of the

storage account that you created previously.
iii.	Update the Account key with the primary access key copied

in step 2.

176 appendix b

4.	 Update the connection string values to use the same value for all the following
role settings:

Note: You will need to update the connection string value in several settings. Instead
of using the Storage Account Connection String dialog every time, you can copy the
value of the connection string you created in the previous step, and paste it into the
Value field for the remaining settings.

 177tailspin surveys installation guide

Role Setting Name

Tailspin.Web DataConnectionString

Tailspin.Web Microsoft.WindowsAzure.Plugins.
Diagnostics.ConnectionString

Tailspin.Web.Survey.Public DataConnectionString

Tailspin.Web.Survey.Public Microsoft.WindowsAzure.Plugins.
Diagnostics.ConnectionString

Tailspin.Workers.Surveys DataConnectionString

Tailspin.Workers.Surveys Microsoft.WindowsAzure.Plugins.
Diagnostics.ConnectionString

Tailspin.Web.Management DataConnectionString

Tailspin.Web.Management Microsoft.WindowsAzure.Plugins.
Diagnostics.ConnectionString

Tailspin.Web.Management AutoscalingStorage

Tailspin.Wokers.Autoscaling DataConnectionString

Tailspin.Wokers.Autoscaling Microsoft.WindowsAzure.Plugins.
Diagnostics.ConnectionString

Tailspin.Wokers.Autoscaling AutoscalingStorage

To create a password for accessing the Autoscaling
management site
1.	 In Visual Studio, double-click the Tailspin.Web.Management role in the Tailspin.

Autoscaling.Cloud project and click Settings.
2.	 Set a username and a password in the provided settings.

Note: Setting a password is mandatory for security reasons.

Build the Solution
At this point, you are now ready to build the Tailspin solution.

To build the solution
1.	 In the Visual Studio Solution Explorer, select the Tailspin solution in Visual

Studio.
2.	 Right-click and select Rebuild Solution.

178 appendix b

Deploy to Windows Azure
The following projects need to be deployed to Windows Azure:
•	 Tailspin.Surveys.Cloud (to the Tailspin-Surveys hosted service)
•	 Tailspin.Autoscaling.Cloud (to the Tailspin-Austoscaling hosted service)

Once you’ve deployed one project, you can deploy the next one as soon as you see
that the deployment was added and has started in the Visual Studio Windows Azure
Activity Log window.

Known Issue: Due to a limitation in Visual Studio 2010 IntelliTrace, the following
runtime exception is thrown when the application block is hosted on Windows Azure
with IntelliTrace enabled:

System.Security.VerificationException: Operation could destabilize the runtime.
Workaround: To address this issue, you will need to disable IntelliTrace on the

Autoscaling Application Block assembly. To do this, add Microsoft.Practices.Enter-
priseLibrary.WindowsAzure.* to the list of excluded modules. See instructions here:
VerificationException from Windows Azure IntelliTrace.

Deploying Tailspin to the Staging Slot
You will first deploy these projects to the Staging deployment slot in your hosted service
because the default values in the service information store for Tailspin Surveys reference
the deployment in the Staging slot.

To deploy Tailspin to the Staging slot
1.	 In Solution Explorer, right-click the TailSpin.Surveys.Cloud project and select

Publish.

http://blogs.msdn.com/b/kylemc/archive/2010/06/09/ria-azure-and-intellitrace.aspx
http://blogs.msdn.com/b/jnak/archive/2010/07/22/verificationexception-from-windows-azure-intellitrace.aspx

 179tailspin surveys installation guide

2.	 In the Publish Windows Azure Application wizard, select the following:

a.	 In the Windows Azure Publish Sign In step, select the subscription you
imported in the previous steps, and click Next.

b.	 In the Windows Azure Publish Settings step, select Tailspin-Surveys as the
Hosted service.

c.	 Select Staging as the Environment.
d.	 In the Service configuration, select Cloud.
e.	 Click Publish to publish the hosted service.

3.	 Before continuing with the next step, wait until the project finishes building and
you see that the deployment was added and has started in the Visual Studio
Windows Azure Activity Log window.

4.	 In Solution Explorer, right-click the Tailspin.Autoscaling.Cloud project and
select Publish.

5.	 In the Publish Windows Azure Application wizard, select the following:

a.	 In the Windows Azure Publish Sign In step, select the subscription you
imported in the previous steps, and click Next.

b.	 In the Windows Azure Publish Settings step, select Tailspin-Autoscaling as
the Hosted service.

c.	 Select Staging as the Environment.
d.	 In the Service configuration, select Cloud.
e.	 Click Publish to publish the hosted service.

180 appendix b

Testing If Tailspin Surveys Works
You should ensure that the Tailspin Surveys application works from a public website,
tenant website, and management website.

Public Website
Tailspin contains a public website that allows end users to fill out surveys. To view this
site, browse to the hosted service for Tailspin-Surveys.

http://[dns for Tailspin-Surveys hosted service]

You can find this URL in the Management Portal - Windows Azure. Go into the
Hosted Services section and select the Tailspin.Surveys.Cloud deployment that is under
the Tailspin-Surveys hosted service. You will see the DNS name on the details on the right,
and you can right-click and copy this value.

Tenant Website
Tenants can access the tenant website. This website allows the tenants to create surveys
and analyze the results. There are two tenants provisioned: Adatum and Fabrikam.

To view this site, browse to the hosted service for Tailspin-Surveys using HTTPS. You
can find this URL in the Management Portal - Windows Azure.

https://[dns for Tailspin-Surveys hosted service]

The URL is the same as the public website, but you need to change the scheme from
HTTP to HTTPS.

Because the solution uses a test certificate, you will see the message: “Continue to
this website (not recommended).” Click on this link to continue.

When you browse to this site, you will be logged on using (simulated) claims-based
authentication.

Management Website
Tailspin operators can use the management website to manage rules and monitor the
autoscaling process. There is also a page to generate a simulated load on the website, to
show how the autoscaling process works.

To view this site, browse to the hosted service for Tailspin-Autoscaling using HTTPS.

https://[dns for Tailspin-Autoscaling hosted service]

You can find this URL in the Management Portal - Windows Azure. Go into the
Hosted Services section and select the Tailspin.Autoscaling.Cloud deployment that is
under the Tailspin-Autoscaling hosted service. You will see the DNS name on the details
on the right, and you can right-click and copy this value, but make sure to update the
scheme to use HTTPS instead of HTTP.

Because the solution uses a test certificate, you will see the message: “Continue to
this website (not recommended).” Click on this link to continue.

 181tailspin surveys installation guide

Configuring Tailspin Autoscaling Functionality
Now you are ready to configure the Service Information Store and upload the sample
rules.

Configuring the Service Information Store
The Service Information Store specifies the roles in the application that can be scaled, as
well as additional settings for the operation of the Autoscaling Application Block. In order
to see the scenario running, you will need to configure the Service Information Store to
match your newly created environment.

To configure the Service Information Store
1.	 Navigate to the Tailspin management site.
2.	 Click the Reset service model to default link under the Service Information

XML file heading in the Rules and Service Information Stores section. This
option is only available on the Home page, not on the Service Information tab
on the Navigation tab.

Note: This will upload to Blob storage a copy of the default-service-information-
set.xml file that is in the SourceCode\Tailspin\Sample stores folder in your installation
location.

3.	 The default service information file does not contain the correct subscription
information, so click the Service Information tab on the navigation bar in order
to update it to reflect your current deployment in Windows Azure.

4.	 Click the line on the Subscriptions list with the TailspinSubscription name. You
will paste in the value from the next step here.

5.	 In the Management Portal - Windows Azure, select your subscription.

a.	 On the right-hand pane, select and copy your subscription ID using Ctrl+C
(the portal is a Microsoft Silverlight® browser plug-in application, so the
right-click copy menu option is not available).

6.	 Paste the value into the SubscriptionId field on the Subscription Details form
in the Tailspin management site.

7.	 In the Management Certificates section on the Management Portal - Windows
Azure:

a.	 Select the uploaded Tailspin management certificate with the name
Windows Azure Tools.

b.	 Select and copy the thumbprint of the certificate from the pane on the
right-hand side.

c.	 Paste the thumbprint value into the Management Certificate Thumbprint
field on the Subscription Details form in the Tailspin management site.

8.	 In the Management Portal - Windows Azure, select Tailspin-Surveys Hosted
Service.

182 appendix b

a.	 Select the DNS Prefix value of the Hosted Service on the right-hand pane
and copy the value.

b.	 Paste the value into the DNS Prefix field under the Deployed Hosted
Services section in the Tailspin management site form.

9.	 In Visual Studio, double-click on the Tailspin.Workers.Autoscaling role under
the Tailspin.Management.Worker.Cloud project roles.

a.	 Select the Settings tab.
b.	 Copy the value of the AutoscalingStorage setting.
c.	 Paste the value into the Connection String field under the Storage

Account section in the Tailspin management site form.
10.	 Click the Save button at the bottom of the page.

Uploading the Sample Rules
1.	 On the Tailspin management site, click on the Home tab.
2.	 Click the Reset rules to default link under the Rule Set XML file heading in the

Rules and Service Information stores section. This option is only available on the
Home page, not on the Service Information tab on the Navigation tab.

Note: This will upload to Blob Storage a copy of the default-rules-set.xml file that
is in the SourceCode\Tailspin\Sample stores folder in your installation location.

After these steps, the Tailspin Surveys application should be automatically scaled
based on the rules. You can go to the Monitoring tab to see how the target application
evolves with time, or go into the corresponding tabs and change the reactive and
constraint rules at run time to see how it behaves with different settings.

Running Tailspin Surveys Locally in Debug Mode
The Autoscaling Application Block uses the Windows Azure Storage functionality added
during the SDK 1.6 timeframe, which is currently not supported by the Storage Emulator.
Therefore, the local debug runs still need to access the live Windows Azure Storage ac-
count. This is why you needed to set all of the connection strings in the Prepare the
Settings in the Cloud Projects section to target All Configurations.

Also, the Windows Azure Service Management API is not supported on the Compute
Emulator, thus the Autoscaling Application Block can only target hosted services
deployed to Windows Azure.

The Tailspin.Autoscaling.Cloud project can be run in debug mode locally, but it
needs to use Windows Azure Storage for storing the data points and the target applica-
tion must be hosted in Windows Azure.

 183tailspin surveys installation guide

Running the Management Application in Simulated Mode
If you wish, you can run the management application in simulated mode. This allows you
to explore the management application without having to deploy the full Tailspin Surveys
application to Windows Azure. This experimental mode is provided to present you with
the option to concentrate on the Autoscaling Application Block’s interactions, without
including any Windows Azure-related extra steps.

The implementation replaces some classes through implementing the interfaces that
the block accesses, as shown in the following figure:

The solution uses an in-session storage, which is not durable across different sessions
or debugs runs.

To work in the simulated mode
1.	 Start Visual Studio as an administrator.
2.	 Open the Tailspin.Simulated.sln solution.
3.	 In Solution Explorer, right-click the Tailspin.Simulated solution, select Enable

NuGet Package Restore, and click Yes in the confirmation dialog box.

184 appendix b

Note: If you are using NuGet version 1.5 or less, you will not see the Enable NuGet
Package Restore menu item. In this case, enter the following commands on the
NuGet Package Manager Console. You can access the NuGet Package Manager
Console through the Visual Studio menu. Point to Tools, point to Library Package
Manager, select Package Manager Console, and enter the following commands:
•	Install-Package NuGetPowerTools
•	Enable-PackageRestore

4.	 Set the Tailspin.Management.Simulated.Cloud project as the startup project.
5.	 Press F5.
6.	 Because the solution uses a test certificate, you will see the following message in

the browser window: “Continue to this website (not recommended).” Click on
that link to continue.

7.	 You should see the “Simulated Scaling Mode is currently active” message on the
lower left corner of the browser window.

Known Issues
The Tailspin Surveys application has the following known issues:
•	 If the rules and service information store XML files do not conform to the included

schemas, the application throws an exception and stops working.
•	 Due to a limitation in Visual Studio 2010 IntelliTrace, the following runtime exception

is thrown when the application block is hosted on Windows Azure with IntelliTrace
enabled:

http://blogs.msdn.com/b/kylemc/archive/2010/06/09/ria-azure-and-intellitrace.aspx

 185tailspin surveys installation guide

System.Security.VerificationException:
Operation could destabilize the runtime.

Workaround: To address this issue, you will need to disable IntelliTrace on the
Autoscaling Application Block assembly.
To do this, add Microsoft.Practices.EnterpriseLibrary.Windows
Azure.* to the list of excluded modules. See instructions here: VerificationException
from Windows Azure IntelliTrace.

•	 Input field validation is currently incomplete.

More Information
Visit the Enterprise Library Integration Pack for Windows Azure home page for the
latest news:
http://entlib.codeplex.com/wikipage?title=EntLib5Azure
Please refer to the installation documents of the previous releases for the topics that
are not covered in this document:
http://wag.codeplex.com/releases/view/71446
To learn more about the Autoscaling Application Block, see Chapter 4, “Autoscaling and
Windows Azure,” in this guide and “The Autoscaling Application Block” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680945(v=PandP.50).aspx
To view a video walkthrough about the Autoscaling Application Block, see “Autoscaling
Windows Azure applications” on Channel 9:
http://channel9.msdn.com/posts/Autoscaling-Windows-Azure-applications
To learn more about the Transient Fault Handing Application Block, see Chapter 6,
“Transient Fault Handling” in this guide and “The Transient Fault Handing Application
Block” on MSDN:
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
To get the NuGet Package Manager, see the NuGet community site on CodePlex:
http://nuget.codeplex.com/
To learn more about Windows Azure profile generation, see
Windows Azure:
http://go.microsoft.com/fwlink/?LinkId=229563.
To learn more about the limitation in Visual Studio 2010 IntelliTrace and how to disable
IntelliTrace on an assembly, see “RIA, Azure,
and IntelliTrace” on Kyle McClellan’s blog:
http://blogs.msdn.com/b/kylemc/archive/2010/06/09/ria-azure-and-intellitrace.aspx
To access web resources more easily, see the online version of the bibliography on
MSDN:
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

http://blogs.msdn.com/b/jnak/archive/2010/07/22/verificationexception-from-windows-azure-intellitrace.aspx
http://blogs.msdn.com/b/jnak/archive/2010/07/22/verificationexception-from-windows-azure-intellitrace.aspx
http://entlib.codeplex.com/wikipage?title=EntLib5Azure
http://wag.codeplex.com/releases/view/71446
http://msdn.microsoft.com/en-us/library/hh680945(v=PandP.50).aspx
http://channel9.msdn.com/posts/Autoscaling-Windows-Azure-applications
http://msdn.microsoft.com/en-us/library/hh680934(v=PandP.50).aspx
http://nuget.codeplex.com/
http://go.microsoft.com/fwlink/?LinkId=229563
http://blogs.msdn.com/b/kylemc/archive/2010/06/09/ria-azure-and-intellitrace.aspx
http://msdn.microsoft.com/en-us/library/hh749032(v=PandP.50).aspx

 187

appendix c Glossary

application throttling. The process of reducing an application’s
resource requirements, typically to maintain the performance of
core functionality in response to changes in workload. Examples
would be switching off nonessential features, or switching to a
lightweight UI.

autoscaling. Using an automated mechanism to scale a Windows
Azure™ technology platform application.

blob lease. A mechanism in Windows Azure that ensures that only
a single client can access a blob.

burst. A sudden increase in the workload for a Windows Azure
application.

cool-down period (in the context of the Autoscaling Application
Block). The period of time after a scaling action has taken place
against your Windows Azure application during which no further
autoscaling activities should take place. This allows the application
to settle down after the scaling operation and helps to reduce the
number of scaling actions that are performed. You can configure the
value of the cool-down period independently for scale-up and
scale-down operations. The default value of the cool-down period is
20 minutes.

constraint rules. Rules that set explicit boundaries on the scaling
process by defining the minimum and maximum number of instances
permitted during a given time period. You should set the minimum
value to ensure that you continue to meet your service level agree-
ments (SLAs). You should set the maximum value in order to limit
your costs. Constraint rules consist of the maximum and minimum
instance count boundaries, a rank, and optionally a timetable that
defines when the rule is in effect. If there is no timetable, the rule is
always in effect.

188 appendix c

cost optimization (in the context of the Autoscaling Application
Block). A way to ensure that you make the best use of your running
role instances by starting them early in the clock hour and stopping
them late in the clock hour.

data point. An instantaneous metric value with an associated
timestamp. The following table shows some example data points.

Metric Value Timestamp

CPU usage 83.7% 10:03:56

Unprocessed orders 2873 10:04:13

detection strategy (in the context of the Transient Fault Handling
Application Block). A definition of the logic used to identify tran-
sient errors in a service.

elasticity. The ability of an application to automatically scale to
meet changing workload requirements.

freeze period (in the context of the Autoscaling Application Block).
The period immediately after a deployment operation or a change to
your Windows Azure application’s service configuration during
which Windows Azure does not allow any additional configuration
changes. The duration of the freeze period is determined by Win-
dows Azure and is not configurable. The duration of the freeze
period is typically a couple of minutes, but may vary.

horizontal scalability (in the context of the Autoscaling Application
Block). The ability of your application to be scaled by adding more
role instances to your hosted service.

management API certificate (in the context of Windows Azure). A
certificate used to secure Windows Azure Management Service API
calls.

metric. A parameter that is measured. Examples include perfor-
mance counters such as CPU usage and free memory, and business-
related metrics such as the number of unprocessed orders and the
number of registered tenants in the application. Metrics may also be
defined as the result of a calculation such as queue length per
instance in the case where multiple role instances share a queue.

operand. Defines how to calculate the value for a metric that can be
used in a reactive rule expression. For example, you can create a
performance counter operand that monitors the CPU usage for a
worker role and calculates the average value over 10 minutes.
Operands are used by reactive rules.

rank. A property of a rule that is used by the block to resolve
conflicts between rules. The higher the rank, the higher the priority.

 189glossary

reactive rules. Rules that react to varying loads on your application
and trigger a scaling action when an aggregate value derived from a
set of data points exceeds a certain threshold.

retry strategy (in the context of the Transient Fault Handling
Application Block). A definition of how many retries to attempt and
the interval between each retry.

retry policy (in the context of the Transient Fault Handling Applica-
tion Block). The combination of a retry strategy and a detection
strategy.

role. A service definition to deploy your application code to Win-
dows Azure. A Windows Azure application may consist of many
web and worker roles.

role instance. An instance of a web or worker role running in
Windows Azure. An individual web or worker role may have multiple
running instances in order to make the role more reliable or capable
of handling larger workloads.

scale group. A way to define autoscaling rules that can act on
multiple roles at once. Scale groups help to minimize the number of
rules you need to create and manage. They can include roles in
different hosted services.

service certificate (in the context of Windows Azure). A certificate
that an application running in Windows Azure can use to encrypt or
decrypt data.

service information. Defines the aspects of your Windows Azure
application that are relevant to the Autoscaling Application Block.
For example, the Autoscaling Application Block uses the service
information file to know which roles are available for scaling, or
which queues are available for monitoring.

stabilization (in the context of the Autoscaling Application Block).
Damping the scaling operations to prevent unnecessary oscillations
in the number of role instances as a consequence of the autoscaling
operations.

target (in the context of the Autoscaling Application Block).
Identifies a web or worker role type that can have multiple running
instances and that can be scaled. Autoscaling actions can specify
changes to the instance count of a target when the action is per-
formed by an autoscaling rule. Targets usually refer to roles in a
different hosted service from the hosted service where the Auto-
scaling Application Block is hosted.

190 appendix c

timetable (in the context of the Autoscaling Application Block).
Determines when a constraint rule is active. If a constraint rule does
not have a timetable, the rule will always be on.

transient fault. An error that is due to some transient condition. For
example, a transient fault can occur when you use a cloud-hosted
service such as Windows Azure storage or SQL Azure™ technology
platform and you lose your connection as a result of temporary
resource shortages. The result is an error condition, but when you
retry the same command a short time later, it may succeed because
the connection has been restored.

vertical scalability (in the context of the Autoscaling Application
Block). The ability for your application to be scaled by increasing the
size of a role instance by using more CPU cores and/or more memory.

WASABiCmdlets. A collection of Windows PowerShell® Cmdlets
that you can use to manage the Autoscaling Application Block.

 191

Index

A
.cscfg file, 93
.pfx file, 162‑165
Access Control (ACS), 6
actions see custom actions
ActiveSurveysDataPointsCollector class, 121‑124
activeSurveysOperand custom operand, 119‑121
advanced usage scenarios, 60‑66
Appendix A see Tailspin Surveys to multiple data

centers
Appendix B see Tailspin Surveys installation guide
applications

developing, 7‑8
differences, 131‑132
lifecycle, 63‑64
Tailspin Surveys, 23‑25
throttling, 35‑36
updating, 9

architecture, 27‑28
audience, xvi
autoscaling, 31‑81

adding to VS project, 49
application throttling, 35‑36
collecting history data, 91
configuration UI, 92
constraint rules, 36‑39
constraint rules interacting with reactive

rules, 41
constraint rules with maximum and minimum

values, 39
instances, 34‑35, 54‑55
lifecycle, 43‑45
logging, 42‑43
monitoring, 59

multiple constraint rules and no reactive
rules, 38

NuGet, 49
predictability, 46
reactive rules, 39‑42
rules, 55‑57
solution, 86‑92
Surveys elasticity, 95
visualizing actions, 111‑114
when to use and not use, 45‑47

Autoscaling Application Block, xv, 20
adding throttling behavior, 54
advanced usage scenarios, 60‑66
application lifecycle, 63‑64
autoscaling rules, 55‑57
average rule evaluation period, 69‑70
changing Windows Azure application, 51
configuration settings, 67‑71
custom actions, 65
custom logging, 66
custom operands, 65
custom stores, 66
Data Collector, 74‑75
Data Collector activity, 75
Data Points Store, 75
different ratios at different times, 61‑62
extending, 65‑66
hosting, 50‑51
how it works, 73‑76
instance autoscaling throttling, 54‑55
instance scaling, 33
Logger component, 76
long rule evaluation period, 70
Metronome, 74

192

monitoring, 58‑60
notifications, 62‑63
planning tool, 72‑73
Rule Evaluator activity, 75
Rules Store, 75‑76
scale groups, 60‑61, 88
Scaler, 76
schedule-based autoscaling without reactive

rules, 57‑58
service information, 52‑53
Service Information Store, 75
stabilizer configuring, 70‑71
Tailspin scenario, 86‑92
throttling, 33
timing relationships, 68
Tracker activity, 76
using, 47‑71
WASABiCmdlets, 66

average rule evaluation period, 69‑70
AzureStorageWadLogDataStore class, 114

B
Beth see business manager role
Bharath see cloud specialist role
bibliography, 16
billing configuration for a standard subscription, 11
Binary Large Object (BLOB) Service, 4
bursts, 83‑85
Business Intelligence Reporting service, 7
business manager role, xix

C
Caching Application Block, 18
Caching Service, 5
certificates

and deployment, 126
to enable scaling operations, 127
as hosted services’ service certificates,

169‑170
service certificate to enable SSL, 126‑127
in the Visual Studio Cloud projects, 173‑175
see also SSL certificates

cloud, 1
Cloud projects setting, 175‑177
cloud specialist role, xviii
CloudStorageAccount class, 93
community support, xxii, 12‑16
compute environment, 3‑4

conditional retry logic, 134
configuration

differences, 131
settings, 67‑71
stabilizer, 70‑71

constraint rules, 32‑33
autoscaling, 36‑39
interacting with reactive rules, 41
with maximum and minimum values, 39
multiple with no reactive rules, 38
Surveys elasticity, 88‑91, 95‑96

Content Delivery Network (CDN), 5
contributors and reviewers, xxi‑xxii
cool-down periods, 52‑53
costs

estimating, 12
managing, 46

Cryptography Application Block, 18
.cscfg file, 93
custom actions

Autoscaling Application Block, 65
Surveys elasticity, 115‑119
Tailspin Surveys rule editor, 118‑119

customer demand, 45
custom logging, 66
custom operands

Autoscaling Application Block, 65
Surveys elasticity, 119‑124
with the Tailspin Surveys rule editor, 124

custom services, 140
custom stores, 66

D
Data Access Application Block, 18
data center costs, 130‑131
Data Collector, 74‑75
Data Collector activity, 75
data management, 4‑5
Data Points Store, 75
debug mode, 182
definitions, 187‑190
Dependency Checking tool, 126, 160‑161
different ratios at different times, 61‑62

E
Ed see Enterprise Library expert role
Enterprise Library

components, 19

 193index

described, 17‑21
Enterprise Library expert role, xix
Enterprise Library Integration Pack, 17‑21
Exception Handling Application Block, 18
extending, 65‑66
extensionAssemblies element, 124

F
faults see transient faults
feedback and support, 13
foreword, xi‑xii
FromConfigurationSetting method, 93
functionality, 181

G
glossary, 187‑190
goals and concerns, 26‑27
GraphController class, 112‑114
guide, xv

H
HomeController class, 110
horizontal scalability, 2
hosted services, 167
hosting

Autoscaling Application Block, 50‑51
code creating services, 167‑168

how to use this guide, xv

I
inside the implementation, 92‑125
instance autoscaling rules, 54‑55
instances, 34‑35

instantiating objects, 137
scaling, 33

IntelliTrace, 178, 184‑185
introduction, 1‑16
IT professional role, xix

J
Jana see software architect role

K
known issues, 184‑185

L
lifecycle, 43‑45

Logger component, Autoscaling Application Block,
76

logging
autoscaling, 42‑43
configuration, 124‑125
see also custom logging

Logging Application Block, 18
logic, 134
long rule evaluation period, 70

M
management website, 180
Marketplace service, 7
Markus see software developer role
Metronome, 74
Microsoft Enterprise Library Integration Pack

for Windows Azure see Enterprise Library
Integration Pack

monitoring, 58‑60
multiple geographic locations, 128‑132

N
networking services, 5‑6
notifications, 62‑63

by SMS, 92
NuGet, 49, 184

packages, 172‑173

O
objects, 137
online bibliography, 16
operands, 40, 101

see also custom operands
option 1: deploying centrally, 129
option 2: deploying in each data center, 130

P
password for autoscaling management site, 177
performance counter data, 102‑104
.pfx file, 162‑165
planning tool, 72‑73
Poe see IT professional role
Policy Injection Application Block, 18
predictability, 46
preface, xv‑xix
prerequisites, xvii‑xviii

Tailspin Surveys installation guide, 160
public website, 180

194

Q
Queue Service, 4

R
reactive rules, 32‑33

autoscaling, 39‑42
reactive scaling rules, 96‑99
reactive throttling rules, 99‑100
reading and writing to the rules store, 107‑109
REST-based interfaces, 8
retries

default retry strategies, 146
defining retry strategies, 137‑138
policy, 138‑139
strategies, 134, 146

retry logic, 134
RetryManager class, 138

Surveys resilience, 146
RetryPolicy class, 139
reviewers, xxi‑xxii
roles, xviii‑xix

instances, 131
Tailspin role types, 88

Rule Evaluator activity, 75
RuleModelStore class, 146‑147
rules

average rule evaluation period, 69‑70
constraint vs. reactive, 37
editing and saving rules, 107‑110
instance autoscaling rules, 54‑55
locating the rules store, 107
long rule evaluation period, 70
reading and writing to the rules store,

107‑109
sample rules upload, 182
valid rules, 109
see also constraint rules; reactive rules

RuleSetModelStore class, 146
RuleSetSerializer class, 107‑109
Rules Store, 75‑76

S
samples

configuration settings, 67‑71
rule uploading, 182

scale groups, 60‑62, 88
Scaler, 76
scaling out, 31

scaling up, 31
scenarios

advanced usage scenarios, 60‑66
see also Tailspin scenario

schedule-based autoscaling without reactive rules,
57‑58

Security Application Block, 18
Service Bus, Windows Azure, 6
service certificate to enable SSL, 126‑127
service information, 52‑53

definition, 93‑95
editing and saving, 111

ServiceInformationModelStore class, 111
Service Information Store, 75
Service Information Store configuring, 181‑182
services

Caching Service, 5
code creating services, 167‑168
custom services, 140
and features, 3‑7
hosted services, 167
networking services, 5‑6
Queue Service, 4
see also custom services

setup and deployment, 126‑132
SharedContainerBootstrapper class, 107
single data center, 129
software architect role, xviii
Software as a Service (SaaS), 25
software developer role, xix
source code and dependencies, 160‑161
SQL Azure, 2

managing database, 9
SQL Azure Database, 5
SQL Azure Data Sync, 5
SSL certificates, 165‑167

thumbprints, 174
stabilizer configuring, 70‑71
Staging deployment slot, 178‑179
storage account creation, 170‑171
stores see custom stores
subscriptions

and billing model, 10‑11
Windows Azure subscription deployment,

162‑171
support, 12‑16
Surveys elasticity, 83‑132

ActiveSurveysDataPointsCollector class,
121‑124

 195index

activeSurveysOperand custom operand,
119‑121

application differences, 131‑132
autoscaling, 95
autoscaling configuration UI, 92
autoscaling solution, 86‑92
certificates and deployment, 126
collecting autoscaling history data, 91
configuration differences, 131
constraint rules, 88‑91, 95‑96
creating valid rules, 109
.cscfg file, 93
custom actions, 115‑119
custom actions and Tailspin Surveys rule

editor, 118‑119
custom operands, 119‑124
custom operand with the Tailspin Surveys

rule editor, 124
data center costs, 130‑131
Dependency Checking tool, 126
editing and saving rules, 107‑110
extensionAssemblies element, 124
GraphController class, 112‑114
inside the implementation, 92‑125
locating the rules store, 107
logging configuration, 124‑125
management certificate to enable scaling

operations, 127
multiple geographic locations, 128‑132
notifications by SMS, 92
operands, 101
option 1: deploying centrally, 129
option 2: deploying in each data center, 130
overview, 86‑92
performance counter data, 102‑104
reactive scaling rules, 96‑99
reactive throttling rules, 99‑100
reading and writing to the rules store,

107‑109
role instances, 131
service certificate to enable SSL, 126‑127
service information definition, 93‑95
service information editing and saving, 111
setup and deployment, 126‑132
single data center, 129
throttling behavior, 105‑106
TransferSurveysToSqlAzureCommand class,

106

validating target names in the rule definitions,
110

visualizing the autoscaling actions, 111‑114
WebRole class, 102‑104
see also Tailspin Surveys installation guide;

Tailspin Surveys to multiple data centers
SurveySqlStore class, 147
Surveys resilience, 143‑148

default retry strategies, 146
RetryManager class, 146
retry strategies, 146
RuleSetModelStore class, 146
SurveySqlStore class, 147
Transient Fault Handling Application Block,

144‑148
see also Tailspin Surveys installation guide;

Tailspin Surveys to multiple data centers

T
Tailspin scenario, 23‑29

architecture, 27‑28
Autoscaling Application Block, 86‑92
goals and concerns, 26‑27
role types, 88

Tailspin Surveys installation guide, 159‑185
certificates as hosted services’ service

certificates, 169‑170
certificates in the Visual Studio Cloud

projects, 173‑175
configuring functionality, 181
debug mode, 182
hosted services creation, 167‑168
known issues, 184‑185
management application in simulated mode,

183‑184
management certificates and exporting as .

pfx file, 162‑165
management website, 180
NuGet packages, 172‑173
password for autoscaling management site,

177
prerequisites, 160
public website, 180
sample rules uploading, 182
Service Information Store configuring,

181‑182
settings in the Cloud projects, 175‑177
source code and dependencies, 160‑161

196

SSL certificate, 165‑167
SSL certificate thumbprint in Visual Studio,

174
SSL certificate thumbprint in Windows

Azure, 174
Staging deployment slot, 178‑179
storage account creation, 170‑171
tenant website, 180
testing, 180
Windows Azure deployment, 178‑180
Windows Azure subscription deployment,

162‑171
see also Surveys elasticity; Surveys resilience

Tailspin Surveys to multiple data centers, 149‑157
Option 1, 149‑154
Option 2, 154‑157

Tailspin.Web.Management project, 110
Tailspin.Web role, 126‑127
team, xxi‑xxii
tenant website, 180
terminology, 187‑190
testing, 180
throttling, 33

applications, 35‑36
instance autoscaling throttling, 54‑55
reactive throttling rules, 99‑100

throttling behavior
Autoscaling Application Block, 54
Surveys elasticity, 105‑106

ThrottlingMode, 105
thumbprints, 174
timing relationships, 68
Topaz see Transient Fault Handling Application

Block
Tracker activity, 76
TransferSurveysToSqlAzureCommand class, 106
Transient Fault Handling Application Block, xv, 20

custom services, 140
defining retry strategies, 137‑138
diagram, 135
history, 135
instantiating objects, 137
retry policy, 138‑139
Surveys resilience, 144‑148
transient faults, 134‑136
using, 136‑139
Visual Studio project, 136
when to use, 140

transient faults, 133‑142

conditional retry logic, 134
historical note, 135
Transient Fault Handling Application Block,

134‑136
see also Transient Fault Handling Application

Block

U
Unity Dependency Injection and Interception, 18

V
validating target names in the rule definitions, 110
Validation Application Block, 18
vertical scalability, 2
Virtual Machine (VM role), 3‑4
Virtual Network Connect, 5‑6
Virtual Network Traffic Manager, 6
Visual Studio project, 136
vocabulary, 187‑190
VS project, 49

W
WADPerformanceCountersTable, 102
WASABi see Autoscaling Application Block
WASABiCmdlets, 66
WebRole class, 102‑104
websites, 180
when to use and not use, 45‑47
who’s who, xvi
Windows Azure, 1‑2

Access Control (ACS), 6
billing configuration for a standard

subscription, 11
Binary Large Object (BLOB) Service, 4
Business Intelligence Reporting service, 7
Caching Service, 5
changing application, 51
compute environment, 3‑4
Content Delivery Network (CDN), 5
cost estimating, 12
data management, 4‑5
developing applications, 7‑8
Marketplace service, 7
networking services, 5‑6
other services, 7
Queue Service, 4
Service Bus, 6
services and features, 3‑7

 197index

SQL Azure Database, 5
SQL Azure Data Sync, 5
subscription and billing model, 10‑11
updating applications, 9
Virtual Machine (VM role), 3‑4
Virtual Network Connect, 5‑6
Virtual Network Traffic Manager, 6
Windows Azure Compute (Web and Worker

Roles), 3
Windows Azure Drives, 4
Windows Azure Storage, 4‑5
Windows Azure Table Service, 4

Windows Azure Compute (Web and Worker
Roles), 3

Windows Azure deployment, 178‑180
Windows Azure Drives, 4
Windows Azure Storage, 4‑5
Windows Azure subscription deployment, 162‑171
Windows Azure Table Service, 4

	_GoBack
	_GoBack

